This page was generated from unit-2.4-Maxwell/Maxwell.ipynb.
2.4 Maxwell’s Equations¶
[Peter Monk: "Finite Elements for Maxwell’s Equations"]
Magnetostatic field generated by a permanent magnet¶
magnetic flux \(B\), magnetic field \(H\), given magnetization \(M\):
Introducing a vector-potential \(A\) such that \(B = \Curl A\), and putting equations together we get
In weak form: Find \(A \in H(\Curl)\) such that
Usually, the permeability \(\mu\) is given as \(\mu = \mu_r \mu_0\), with \(\mu_0 = 4 \pi 10^{-7}\) the permeability of vacuum.
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import *
Geometric model and meshing of a bar magnet:
[2]:
# box = OrthoBrick(Pnt(-3,-3,-3),Pnt(3,3,3)).bc("outer")
# magnet = Cylinder(Pnt(-1,0,0),Pnt(1,0,0), 0.3) * OrthoBrick(Pnt(-1,-3,-3),Pnt(1,3,3))
# air = box - magnet
box = Box( (-3,-3,-3), (3,3,3))
box.faces.name = "outer"
magnet = Cylinder((-1,0,0),X, r=0.3, h=2)
magnet.mat("magnet")
magnet.faces.col = (1,0,0)
air = box-magnet
air.mat("air")
shape = Glue([air,magnet])
geo = OCCGeometry(shape)
Draw (shape, clipping={ "z" : -1, "function":True})
mesh = Mesh(geo.GenerateMesh(maxh=2, curvaturesafety=1))
mesh.Curve(3);
[3]:
mesh.GetMaterials(), mesh.GetBoundaries()
[3]:
(('air', 'magnet'),
('outer',
'outer',
'outer',
'outer',
'outer',
'outer',
'default',
'default',
'default'))
Define space, forms and preconditioner.
To obtain a regular system matrix, we regularize by adding a very small \(L_2\) term.
We solve magnetostatics, so we can gauge by adding and arbitrary gradient field. A cheap possibility is to delete all basis-functions which are gradients (flag 'nograds')
[4]:
fes = HCurl(mesh, order=3, dirichlet="outer", nograds=True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()
from math import pi
mu0 = 4*pi*1e-7
mur = mesh.MaterialCF({"magnet" : 1000}, default=1)
a = BilinearForm(fes)
a += 1/(mu0*mur)*curl(u)*curl(v)*dx + 1e-8/(mu0*mur)*u*v*dx
c = Preconditioner(a, "bddc")
f = LinearForm(fes)
mag = mesh.MaterialCF({"magnet" : (1,0,0)}, default=(0,0,0))
f += mag*curl(v) * dx("magnet")
ndof = 33152
Assemble system and setup preconditioner using task-parallelization:
[5]:
with TaskManager():
a.Assemble()
f.Assemble()
Finally, declare GridFunction and solve by preconditioned CG iteration:
[6]:
gfu = GridFunction(fes)
with TaskManager():
solvers.CG(sol=gfu.vec, rhs=f.vec, mat=a.mat, pre=c.mat, printrates=True)
CG iteration 1, residual = 0.0048467662223670846
CG iteration 2, residual = 0.004063969731223276
CG iteration 3, residual = 0.0032905813899856535
CG iteration 4, residual = 0.0022607529740109092
CG iteration 5, residual = 0.0019757898057493617
CG iteration 6, residual = 0.0011507895290807824
CG iteration 7, residual = 0.0008639313194826818
CG iteration 8, residual = 0.0006327449630705003
CG iteration 9, residual = 0.0004949733353699771
CG iteration 10, residual = 0.0004076054117917275
CG iteration 11, residual = 0.0003164866829728371
CG iteration 12, residual = 0.00018393955810877522
CG iteration 13, residual = 0.00013713589123245218
CG iteration 14, residual = 8.753130615579077e-05
CG iteration 15, residual = 6.404693880078599e-05
CG iteration 16, residual = 4.235156550262935e-05
CG iteration 17, residual = 2.6160805540614055e-05
CG iteration 18, residual = 1.9536276566627022e-05
CG iteration 19, residual = 1.3110760944790093e-05
CG iteration 20, residual = 1.785747835198169e-05
CG iteration 21, residual = 8.15301370214201e-06
CG iteration 22, residual = 5.688680131888116e-06
CG iteration 23, residual = 3.828308292646977e-06
CG iteration 24, residual = 2.5126080461219232e-06
CG iteration 25, residual = 1.9133034169669115e-06
CG iteration 26, residual = 1.1882807365786551e-06
CG iteration 27, residual = 8.414430167587007e-07
CG iteration 28, residual = 5.733996945079643e-07
CG iteration 29, residual = 3.8562951429339694e-07
CG iteration 30, residual = 2.8126447342410325e-07
CG iteration 31, residual = 1.787257767946445e-07
CG iteration 32, residual = 1.285357785351572e-07
CG iteration 33, residual = 9.016197496888776e-08
CG iteration 34, residual = 8.814588767001301e-08
CG iteration 35, residual = 5.0533885819085606e-08
CG iteration 36, residual = 4.430804002227641e-08
CG iteration 37, residual = 4.234869969943776e-08
CG iteration 38, residual = 2.176794113664319e-08
CG iteration 39, residual = 1.4483046229744215e-08
CG iteration 40, residual = 9.874408420599481e-09
CG iteration 41, residual = 9.77540641490154e-09
CG iteration 42, residual = 5.857903798842827e-09
CG iteration 43, residual = 3.6116023191565117e-09
CG iteration 44, residual = 2.6219955365932002e-09
CG iteration 45, residual = 1.7228324342216552e-09
CG iteration 46, residual = 1.1298888041831925e-09
CG iteration 47, residual = 7.954170944298104e-10
CG iteration 48, residual = 5.005043995310956e-10
CG iteration 49, residual = 3.505160816679105e-10
CG iteration 50, residual = 2.2704504732213393e-10
CG iteration 51, residual = 1.5407879565992416e-10
CG iteration 52, residual = 1.043629215060801e-10
CG iteration 53, residual = 1.511007225892269e-10
CG iteration 54, residual = 6.194261556767588e-11
CG iteration 55, residual = 4.03236331586876e-11
CG iteration 56, residual = 2.7648940259836234e-11
CG iteration 57, residual = 1.786753525592341e-11
CG iteration 58, residual = 1.2083444509830638e-11
CG iteration 59, residual = 7.834309281497063e-12
CG iteration 60, residual = 4.9842213521123486e-12
CG iteration 61, residual = 3.5059512072839763e-12
CG iteration 62, residual = 2.7391575083437813e-12
CG iteration 63, residual = 2.34082944394856e-12
CG iteration 64, residual = 1.285172852088259e-12
CG iteration 65, residual = 8.769637631003964e-13
CG iteration 66, residual = 6.057899981897314e-13
CG iteration 67, residual = 4.4326525037498113e-13
CG iteration 68, residual = 4.085244106695441e-13
CG iteration 69, residual = 2.8926086376629363e-13
CG iteration 70, residual = 2.722551883736884e-13
CG iteration 71, residual = 1.3857607227240273e-13
CG iteration 72, residual = 8.915375911342976e-14
CG iteration 73, residual = 5.863165912377015e-14
CG iteration 74, residual = 4.024681804575616e-14
CG iteration 75, residual = 2.6754010640193577e-14
CG iteration 76, residual = 1.772274713983418e-14
CG iteration 77, residual = 1.1619543640936564e-14
CG iteration 78, residual = 7.602212498860875e-15
CG iteration 79, residual = 4.82759237933032e-15
[7]:
Draw (curl(gfu), mesh, "B-field", draw_surf=False, \
clipping = { "z" : -1, "function":True}, \
vectors = { "grid_size":50}, min=0, max=2e-5);
[ ]:
[ ]: