This page was generated from unit-2.11-matrixfree/matrixfree.ipynb.

2.11 Matrix free operator application

Usually, we assemble matrices in sparse matrix format. Certain methods allow to improve performance and reduce memory requirements considerably by avoiding building and storing the system matrix. The counterpart of this approach is that it is now difficult to build preconditioners

Hybrid mixed method

consider the hybrid mixed method

\[\begin{split}\begin{array}{ccccl} A \sigma & + & B^T u & = & f \\ B u & & & = & g \end{array}\end{split}\]

where the matrix \(A\) comes from

\[\int \sigma \tau dx\]

and the matrix \(B\) from

\[\sum_T \int_T \operatorname{div} \, \sigma \, v_T - \int_{\partial T} \sigma_n v_F\]

For \(\sigma\) we use a VectorL2 space, with a Piola-mapping to the physical elements

[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.geom2d import unit_square
from ngsolve.fem import MixedFE

mesh = Mesh(unit_square.GenerateMesh(maxh=0.3))
order=1
Sigma = VectorL2(mesh, order=order, piola=True)
Vt = L2(mesh, order=order-1)
Vf = FacetFESpace(mesh, order=order)
V = Vt*Vf
sigma,tau = Sigma.TnT()
(ut,uf), (vt,vf) = V.TnT()
[2]:
a = BilinearForm(Sigma)
a += sigma*tau * dx

b = BilinearForm(trialspace=Sigma, testspace=V)
b += div(sigma) * vt * dx
n = specialcf.normal(mesh.dim)
dS = dx(element_boundary=True)
b += -sigma*n*vf * dS
b.Assemble()
[2]:
<ngsolve.comp.BilinearForm at 0x7fdf718a51f0>

compute element matrices …

we should observe that the matrices from the \(A\) operator are block-diagonal with \(2\times 2\) blocks, and each element matrix from \(B\) belongs to one of two equivalence classes.

[3]:
for el in mesh.Elements():
    felS = Sigma.GetFE(el)
    trafo = mesh.GetTrafo(el)
    elmat = a.integrators[0].CalcElementMatrix(felS, trafo)
    print (elmat)
     0.5       0       0     0.5       0       0
       0    0.25       0       0    0.25       0
       0       0 0.0833333       0       0 0.0833333
     0.5       0       0       1       0       0
       0    0.25       0       0     0.5       0
       0       0 0.0833333       0       0 0.166667

 0.520958       0       0 0.183569       0       0
       0 0.260479       0       0 0.0917847       0
       0       0 0.0868264       0       0 0.0305949
 0.183569       0       0 0.544569       0       0
       0 0.0917847       0       0 0.272285       0
       0       0 0.0305949       0       0 0.0907615

 0.569183       0       0 0.129853       0       0
       0 0.284592       0       0 0.0649265       0
       0       0 0.0948639       0       0 0.0216422
 0.129853       0       0 0.46885       0       0
       0 0.0649265       0       0 0.234425       0
       0       0 0.0216422       0       0 0.0781417

 0.631472       0       0 0.217655       0       0
       0 0.315736       0       0 0.108827       0
       0       0 0.105245       0       0 0.0362758
 0.217655       0       0 0.470922       0       0
       0 0.108827       0       0 0.235461       0
       0       0 0.0362758       0       0 0.0784869

 0.885812       0       0 0.316764       0       0
       0 0.442906       0       0 0.158382       0
       0       0 0.147635       0       0 0.0527939
 0.316764       0       0 0.395501       0       0
       0 0.158382       0       0 0.19775       0
       0       0 0.0527939       0       0 0.0659168

 1.02921       0       0 0.351738       0       0
       0 0.514604       0       0 0.175869       0
       0       0 0.171535       0       0 0.058623
 0.351738       0       0 0.363114       0       0
       0 0.175869       0       0 0.181557       0
       0       0 0.058623       0       0 0.0605189

 0.36027       0       0 0.100212       0       0
       0 0.180135       0       0 0.0501061       0
       0       0 0.0600451       0       0 0.016702
 0.100212       0       0 0.721798       0       0
       0 0.0501061       0       0 0.360899       0
       0       0 0.016702       0       0  0.1203

 0.767408       0       0 0.410378       0       0
       0 0.383704       0       0 0.205189       0
       0       0 0.127901       0       0 0.0683963
 0.410378       0       0 0.545225       0       0
       0 0.205189       0       0 0.272613       0
       0       0 0.0683963       0       0 0.0908709

 0.495366       0       0 0.129845       0       0
       0 0.247683       0       0 0.0649223       0
       0       0 0.0825611       0       0 0.0216408
 0.129845       0       0 0.538712       0       0
       0 0.0649223       0       0 0.269356       0
       0       0 0.0216408       0       0 0.0897853

 0.610455       0       0 0.132925       0       0
       0 0.305228       0       0 0.0664624       0
       0       0 0.101743       0       0 0.0221541
 0.132925       0       0 0.438475       0       0
       0 0.0664624       0       0 0.219237       0
       0       0 0.0221541       0       0 0.0730791

 0.606985       0       0 0.245865       0       0
       0 0.303492       0       0 0.122933       0
       0       0 0.101164       0       0 0.0409775
 0.245865       0       0 0.511462       0       0
       0 0.122933       0       0 0.255731       0
       0       0 0.0409775       0       0 0.0852437

 0.819927       0       0  0.2964       0       0
       0 0.409964       0       0  0.1482       0
       0       0 0.136655       0       0  0.0494
  0.2964       0       0 0.412053       0       0
       0  0.1482       0       0 0.206026       0
       0       0  0.0494       0       0 0.0686754

 1.03869       0       0 0.538909       0       0
       0 0.519343       0       0 0.269454       0
       0       0 0.173114       0       0 0.0898181
 0.538909       0       0 0.520295       0       0
       0 0.269454       0       0 0.260147       0
       0       0 0.0898181       0       0 0.0867158

 0.754369       0       0 0.256653       0       0
       0 0.377184       0       0 0.128327       0
       0       0 0.125728       0       0 0.0427755
 0.256653       0       0 0.418722       0       0
       0 0.128327       0       0 0.209361       0
       0       0 0.0427755       0       0 0.069787

 0.443235       0       0 0.129495       0       0
       0 0.221617       0       0 0.0647473       0
       0       0 0.0738724       0       0 0.0215824
 0.129495       0       0 0.601868       0       0
       0 0.0647473       0       0 0.300934       0
       0       0 0.0215824       0       0 0.100311

 0.688846       0       0 -0.0113756       0       0
       0 0.344423       0       0 -0.00568782       0
       0       0 0.114808       0       0 -0.00189594
 -0.0113756       0       0 0.363114       0       0
       0 -0.00568782       0       0 0.181557       0
       0       0 -0.00189594       0       0 0.0605189

 0.843809       0       0 0.442685       0       0
       0 0.421905       0       0 0.221342       0
       0       0 0.140635       0       0 0.0737808
 0.442685       0       0 0.52852       0       0
       0 0.221342       0       0 0.26426       0
       0       0 0.0737808       0       0 0.0880866

 0.626531       0       0 0.290343       0       0
       0 0.313266       0       0 0.145172       0
       0       0 0.104422       0       0 0.0483905
 0.290343       0       0 0.533571       0       0
       0 0.145172       0       0 0.266786       0
       0       0 0.0483905       0       0 0.0889285

 0.589162       0       0 0.149169       0       0
       0 0.294581       0       0 0.0745846       0
       0       0 0.0981937       0       0 0.0248615
 0.149169       0       0 0.462099       0       0
       0 0.0745846       0       0 0.23105       0
       0       0 0.0248615       0       0 0.0770166

 0.537192       0       0 0.416452       0       0
       0 0.268596       0       0 0.208226       0
       0       0 0.0895319       0       0 0.0694087
 0.416452       0       0 0.788234       0       0
       0 0.208226       0       0 0.394117       0
       0       0 0.0694087       0       0 0.131372

 0.569748       0       0 0.436652       0       0
       0 0.284874       0       0 0.218326       0
       0       0 0.094958       0       0 0.0727754
 0.436652       0       0 0.773439       0       0
       0 0.218326       0       0 0.38672       0
       0       0 0.0727754       0       0 0.128907

 0.99655       0       0 0.255208       0       0
       0 0.498275       0       0 0.127604       0
       0       0 0.166092       0       0 0.0425347
 0.255208       0       0 0.316222       0       0
       0 0.127604       0       0 0.158111       0
       0       0 0.0425347       0       0 0.0527037

 0.663993       0       0 0.26225       0       0
       0 0.331997       0       0 0.131125       0
       0       0 0.110666       0       0 0.0437084
 0.26225       0       0 0.480088       0       0
       0 0.131125       0       0 0.240044       0
       0       0 0.0437084       0       0 0.0800147

 0.641628       0       0 0.310158       0       0
       0 0.320814       0       0 0.155079       0
       0       0 0.106938       0       0 0.051693
 0.310158       0       0 0.539562       0       0
       0 0.155079       0       0 0.269781       0
       0       0 0.051693       0       0 0.089927

[4]:
for el in mesh.Elements():
    felS = Sigma.GetFE(el)
    felV = V.GetFE(el)
    fel = MixedFE(felS, felV)
    trafo = mesh.GetTrafo(el)

    # try integratos 0 and 1 ...
    elmat = b.integrators[0].CalcElementMatrix(fel, trafo)
    print (elmat)
       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0 -8.66913e-17      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0 5.01581e-17       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0 -4.04151e-17      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0 5.65519e-17      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0 -1.52993e-16       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0 4.47698e-18      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5     0.5       0       0       1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

       0     1.5    -0.5       0       0      -1
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0
       0       0       0       0       0       0

Geometry-free matrix multiplication

NGSolve provides now the possibility to benefit from the geometry independent element matrix. Just one matrix per equivalence class is stored, and the matrix vector product is performed for all elements simultaneously using dense matrix algebra.

[5]:
from netgen.csg import *
geom = CSGeometry()
geom.Add (Sphere(Pnt(50,50,50),80) \
          -Cylinder(Pnt(-100,0,0),Pnt(200,0,0), 40) \
          -Cylinder(Pnt(100,-100,100),Pnt(100,200,100),40)
          -Cylinder(Pnt(0,100,-100), Pnt(0,100,200),40)
          -Sphere(Pnt(50,50,50),50))
# geom.Draw()

mesh = Mesh(geom.GenerateMesh(maxh=25))
mesh.Curve(5)
# Draw (mesh)
[5]:
<ngsolve.comp.Mesh at 0x7fdf4fd39e40>

Same as above, with the geom_free flag for the BilinearForm:

[6]:
order=6
SetHeapSize(100*1000*1000)
Sigma = VectorL2(mesh, order=order, piola=True, tp=True)
Vt = L2(mesh, order=order-1)
Vf = FacetFESpace(mesh, order=order, dirichlet=[2])
V = Vt*Vf
print ("Sigma.ndof =", Sigma.ndof, ", V.ndof =", V.ndof)
sigma,tau = Sigma.TnT()
(ut,uf), (vt,vf) = V.TnT()

b = BilinearForm(trialspace=Sigma, testspace=V, geom_free=True)
b += div(sigma) * vt * dx
n = specialcf.normal(mesh.dim)
dS = dx(element_boundary=True)
b += -sigma*n*vf * dS
b.Assemble()
Sigma.ndof = 118692 , V.ndof = 58492
[6]:
<ngsolve.comp.BilinearForm at 0x7fdf718a73f0>

Check timing with geom_free=True/False:

[7]:
vx = b.mat.CreateRowVector()
vy = b.mat.CreateColVector()
vx[:] = 1

%timeit vy.data = b.mat * vx
3.3 ms ± 872 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)

L2 finite element spaces have a Mass method generating a linear operator for multiplication with the diagonal mass matrix. In case of variable coefficients or curved elements it uses numerical integration. It also provide an inverse operator:

[8]:
ainv = Sigma.Mass(rho=1).Inverse()

Check timig with tp=True/False:

[9]:
vx = ainv.CreateRowVector()
vy = ainv.CreateColVector()
vx[:] = 1

%timeit vy.data = ainv * vx
54.3 ms ± 9.77 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Combine the operators to form the Schur complement, which is actually a discretization of the Laplace operator:

[10]:
Laplace = b.mat @ ainv @ b.mat.T
[11]:
f = LinearForm (V)
f += 1*vt * dx
f.Assemble()

proj = Projector(V.FreeDofs(), True)

gfu = GridFunction (V)
from time import time
start = time()
with TaskManager():
  solvers.CG(mat=Laplace, pre=proj, rhs=f.vec, sol=gfu.vec, maxsteps=5000, printrates=False)
print ("time =", time()-start)
time = 52.636722803115845

The iteration count is very high since we used only the most trivial preconditioner. We can add a low order coarse-grid preconditioner to get rid of the mesh dependency, and also local inverses to improve the \(p\)-dependency.

[12]:
Draw (gfu.components[1], mesh, "gfu1", draw_vol=False);
[ ]: