This page was generated from unit-2.1.7-facetspace-mg/facetspace-mg.ipynb.
2.1.7 Multigrid for hybrid methods¶
Mixed methods for second order problems can often be reduced to the mesh facet, so called hybrid mixed methods. Simiar, hybrid DG methods introduce new variables on the facets, such that the bulk of element variables can be condensed out.
We show how to setup a multigrid preconditioner for hybrid methods. Interesting applications are nearly incompressible materials, or Stokes, discretized by \(H(\operatorname{div})\)-conforming HDG or hybrid mixed methods.
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from ngsolve.la import EigenValues_Preconditioner
The hybrid DG method:
On \(V_h = V_T \times V_F = P^k({\mathcal T}) \times P^k ({\mathcal F})\) we define the bilinear form
Element variables can be condensed out, which leads to a system reduced to the Skeleton.
When splitting a large triangle \(T_H\) into small trianles, the functions on \(\partial T_H\) have a canonical representation on the facets of the fine triangles. However, facet variables on internal edges of \(T_H\) are not defined by embedding. The HarmonicProlongation
provides the energy optimal extension to the internal edges. To define energy optimal we need the energy defined by a bilinear form.
[2]:
ngmesh = unit_square.GenerateMesh(maxh=2)
mesh = Mesh(ngmesh)
order = 3
fes = L2(mesh, order=order) * FacetFESpace(mesh, order=order, hoprolongation=True, dirichlet=".*")
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(2)
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = u*v*dx+ grad(u)*grad(v)*dx - n*grad(u)*(v-vhat)*dS - n*grad(v)*(u-uhat)*dS + 5*(order+1)**2/h*(u-uhat)*(v-vhat)*dS
bfa = BilinearForm(HDGform, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa, inverse="sparsecholesky")
pre = preconditioners.MultiGrid(bfa, blocktype=["vertexpatch"], cycle=1)
[3]:
with TaskManager():
for l in range(7):
mesh.Refine()
bfa.Assemble()
# pre.Update()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam_min/lam_max = ", lam[0], lam[-1])
l = 0 ndof = 144 lam_min/lam_max = 0.9999999999999993 0.9999999999999993
l = 1 ndof = 544 lam_min/lam_max = 0.9573848616699543 0.9999918601826863
l = 2 ndof = 2112 lam_min/lam_max = 0.9261189386281288 0.9999692236038735
l = 3 ndof = 8320 lam_min/lam_max = 0.9325349652513784 0.9998939800629592
l = 4 ndof = 33024 lam_min/lam_max = 0.92945510895588 0.9997230751035944
l = 5 ndof = 131584 lam_min/lam_max = 0.9282844459834527 0.9996349409051806
l = 6 ndof = 525312 lam_min/lam_max = 0.9280114490358107 0.9995334765161776
[4]:
f = LinearForm (x*v*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager():
Solve (bfa*gfu==f, pre, lin_solver=solvers.CGSolver, printrates=True)
CG iteration 1, residual = 0.09459461645928992
CG iteration 2, residual = 0.0005944516866628238
CG iteration 3, residual = 7.695100604718358e-06
CG iteration 4, residual = 2.0699972197723346e-07
CG iteration 5, residual = 3.8945463326402356e-09
CG iteration 6, residual = 4.9504671345225695e-11
CG iteration 7, residual = 1.0763303055548899e-12
CG iteration 8, residual = 2.096450968451275e-14
[5]:
Draw (gfu.components[0]);
Hybrid-mixed methods:¶
Find \(\sigma, u, \widehat u \in \Sigma_h \times V_h \times F_h\):
where \(\Sigma_h\) is an discontinuous \(H(div)\) finite element space, \(V_h\) a sub-space of \(L_2\), and \(F_h\) consists of polynomials on every facet.
[6]:
ngmesh = unit_square.GenerateMesh(maxh=0.2)
mesh = Mesh(ngmesh)
order = 2
fesSigma = PrivateSpace(Discontinuous(HDiv(mesh, order=order, RT=True)))
fesL2 = L2(mesh, order=order)
fesFacet = FacetFESpace(mesh, order=order, hoprolongation=True, dirichlet=".*")
fes = fesSigma*fesL2*fesFacet
(sigma, u,uhat), (tau, v,vhat) = fes.TnT()
n = specialcf.normal(2)
dS = dx(element_vb=BND)
mixedform = -sigma*tau*dx
mixedform += div(sigma)*v*dx - sigma*n*vhat*dS
mixedform += div(tau)*u*dx - tau*n*uhat*dS
bfa = BilinearForm(mixedform, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa, inverse="sparsecholesky")
pre = preconditioners.MultiGrid(bfa, blocktype=["vertexpatch"], cycle=1)
for l in range(5):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam_min/lam_max = ", lam[0], lam[-1])
l = 0 ndof = 2328 lam_min/lam_max = 0.8830690135570511 1.0000826609163065
l = 1 ndof = 9192 lam_min/lam_max = 0.8695401255366377 0.9995622254215335
l = 2 ndof = 36528 lam_min/lam_max = 0.848063940231164 0.9985740487773187
l = 3 ndof = 145632 lam_min/lam_max = 0.830706421034594 0.9979298221317767
l = 4 ndof = 581568 lam_min/lam_max = 0.8389819990458989 0.9976337192727811
[7]:
f = LinearForm(x*v*dx).Assemble()
gfu = GridFunction(fes)
Solve(bfa*gfu==f, pre, solvers.CGSolver, printrates=True)
Draw (gfu.components[1]);
CG iteration 1, residual = 0.09771383816444197
CG iteration 2, residual = 0.001196480641099551
CG iteration 3, residual = 3.137555063707439e-05
CG iteration 4, residual = 9.521672795304109e-07
CG iteration 5, residual = 3.248449810410441e-08
CG iteration 6, residual = 1.6499700712880606e-09
CG iteration 7, residual = 8.248735706513305e-11
CG iteration 8, residual = 3.983130055423988e-12
CG iteration 9, residual = 2.07728681577481e-13
CG iteration 10, residual = 1.2019646044004085e-14
Nearly incompressible materials, H(div)-conforming HDG¶
[Lehrenfeld+Schöberl, 2016]
[8]:
ngmesh = unit_square.GenerateMesh(maxh=0.3)
mesh = Mesh(ngmesh)
order = 3
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet=".*")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(2)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 1*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, smoother="block", smoothingsteps=1, blocktype=["vertexpatch"], cycle=1)
[9]:
with TaskManager():
for l in range(4):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, lam[0], lam[-1])
l = 0 ndof = 2190 0.8031555871568414 1.0389867675724214
l = 1 ndof = 8622 0.6881351203081374 1.0480292176047754
l = 2 ndof = 34158 0.6819544900463874 1.0702830065295148
l = 3 ndof = 135918 0.6926495255892826 1.0752680621327033
[10]:
with TaskManager():
f = LinearForm ((0.5-y)*v[0]*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager(pajetrace=10**8):
solvers.BVP(bfa, f, gfu, pre, print=True)
CG iteration 1, residual = 0.01974650523880634
CG iteration 2, residual = 0.0002077035687082246
CG iteration 3, residual = 1.3541629719826437e-05
CG iteration 4, residual = 1.2095124816682557e-06
CG iteration 5, residual = 1.1795588284935682e-07
CG iteration 6, residual = 1.2588391514974833e-08
CG iteration 7, residual = 1.4899585818785803e-09
CG iteration 8, residual = 1.6707190756403372e-10
[11]:
Draw (gfu.components[0])
[11]:
BaseWebGuiScene
Nearly incompressible materials / Stokes in 3D¶
[12]:
ngmesh = unit_cube.GenerateMesh(maxh=2)
mesh = Mesh(ngmesh)
order = 2
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet=".*")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(3)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = 0.001*u*v*dx+InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 5*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, smoother="block", smoothingsteps=3, blocktype=["edgepatch"], cycle=1)
[13]:
with TaskManager():
for l in range(3):
mesh.Refine()
bfa.Assemble()
# pre.Update()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam min/max = ", lam[0], lam[-1])
l = 0 ndof = 5574 lam min/max = 0.506050873923219 1.211263015326645
l = 1 ndof = 43470 lam min/max = 0.2580696754603473 1.2905858121466447
l = 2 ndof = 342894 lam min/max = 0.23767448244474365 1.4487474122388502
[14]:
with TaskManager():
f = LinearForm ((0.5-y)*v[0]*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager():
Solve(bfa*gfu==f, pre, solvers.CGSolver, printrates=True)
CG iteration 1, residual = 0.01610990611316376
CG iteration 2, residual = 0.0036631197303141267
CG iteration 3, residual = 0.001376384118012876
CG iteration 4, residual = 0.0005505700530463488
CG iteration 5, residual = 0.000236679462181323
CG iteration 6, residual = 0.00010014395420473556
CG iteration 7, residual = 4.3494048121125676e-05
CG iteration 8, residual = 1.659018620943701e-05
CG iteration 9, residual = 6.187485725234715e-06
CG iteration 10, residual = 2.333044220717596e-06
CG iteration 11, residual = 9.509298878743187e-07
CG iteration 12, residual = 3.777077595832947e-07
CG iteration 13, residual = 1.6068815303147036e-07
CG iteration 14, residual = 6.952194561495749e-08
CG iteration 15, residual = 2.7823124594692356e-08
CG iteration 16, residual = 1.0924337753521726e-08
CG iteration 17, residual = 4.487871076212856e-09
CG iteration 18, residual = 1.8627230253710303e-09
CG iteration 19, residual = 7.40287280433968e-10
CG iteration 20, residual = 2.9942322000878885e-10
CG iteration 21, residual = 1.2726933117907886e-10
CG iteration 22, residual = 5.430254195365386e-11
CG iteration 23, residual = 2.202734547458709e-11
CG iteration 24, residual = 8.934086296744364e-12
CG iteration 25, residual = 3.678442279215787e-12
CG iteration 26, residual = 1.4579105634722273e-12
CG iteration 27, residual = 5.886329949368576e-13
CG iteration 28, residual = 2.5680650722949953e-13
CG iteration 29, residual = 1.0908752441050292e-13
CG iteration 30, residual = 4.4221744974798565e-14
CG iteration 31, residual = 1.804574721330256e-14
CG iteration 32, residual = 7.616932077899566e-15
[15]:
clipping = { "function" : True, "pnt" : (0.5,0.5,0.51), "vec" : (0,0,-1) }
Draw (gfu.components[0], order=2, clipping=clipping);
Flow channel in 3D¶
[16]:
from ngsolve import *
from netgen.occ import *
from ngsolve.webgui import Draw
from ngsolve.krylovspace import CGSolver
box = Box((0,0,0), (2.5,0.41,0.41))
box.faces.name="wall"
box.faces.Min(X).name="inlet"
box.faces.Max(X).name="outlet"
cyl = Cylinder((0.5,0.2,0), Z, h=0.41,r=0.05)
cyl.faces.name="cyl"
shape = box-cyl
mesh = shape.GenerateMesh(maxh=0.2).Curve(3)
Draw (mesh);
[17]:
order = 2
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet="wall|inlet|cyl")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(3)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = 0.001*u*v*dx+InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 5*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
with TaskManager():
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, inverse="sparsecholesky", smoother="block", smoothingsteps=1, blocktype=["edgepatch"], cycle=1)
[18]:
with TaskManager():
for l in range(1):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam min/max = ", lam[0], lam[-1])
l = 0 ndof = 1779310 lam min/max = 0.07395292018165389 3.336861388881042
[19]:
gfu = GridFunction(fes)
uin = (1.5*4*y*(0.41-y)/(0.41*0.41)*z*(0.41-z)/0.41**2,0, 0)
gfu.components[0].Set(uin, definedon=mesh.Boundaries("inlet"))
inv = CGSolver(bfa.mat, pre.mat, printrates=True, tol=1e-5)
with TaskManager():
gfu.vec.data -= inv@bfa.mat * gfu.vec
gfu.vec.data += bfa.harmonic_extension * gfu.vec
CG iteration 1, residual = 14.705439018174092
CG iteration 2, residual = 0.6535781335122963
CG iteration 3, residual = 0.2949122809986576
CG iteration 4, residual = 0.1501249968250921
CG iteration 5, residual = 0.11534735471253063
CG iteration 6, residual = 0.07205075926981978
CG iteration 7, residual = 0.05198208987551842
CG iteration 8, residual = 0.03870922114839945
CG iteration 9, residual = 0.022859269501353214
CG iteration 10, residual = 0.0166971232319506
CG iteration 11, residual = 0.01089695408605834
CG iteration 12, residual = 0.007552851135419034
CG iteration 13, residual = 0.005539446505008172
CG iteration 14, residual = 0.00413999616015504
CG iteration 15, residual = 0.0030604930093138622
CG iteration 16, residual = 0.0021714417553204282
CG iteration 17, residual = 0.001557073093465785
CG iteration 18, residual = 0.0011741926334635812
CG iteration 19, residual = 0.0008572928809044942
CG iteration 20, residual = 0.0006182722955591485
CG iteration 21, residual = 0.0005100286526491414
CG iteration 22, residual = 0.00036400544225996187
CG iteration 23, residual = 0.00027695011270474683
CG iteration 24, residual = 0.0002061571037436529
CG iteration 25, residual = 0.00014504450758845864
[20]:
clipping = { "function" : True, "pnt" : (1,0.2,0.2 ), "vec" : (0,0,-1.0) }
Draw (gfu.components[0], mesh, order=2, clipping=clipping);
Pressure:
[21]:
Draw (div(gfu.components[0]), mesh, order=2, clipping=clipping, draw_surf=False);
[ ]:
[ ]:
[ ]: