This page was generated from unit-2.4-Maxwell/Maxwell.ipynb.

2.4 Maxwell’s Equations

[Peter Monk: "Finite Elements for Maxwell’s Equations"]

Magnetostatic field generated by a permanent magnet

magnetic flux \(B\), magnetic field \(H\), given magnetization \(M\):

\[\DeclareMathOperator{\Grad}{grad} \DeclareMathOperator{\Curl}{curl} \DeclareMathOperator{\Div}{div} B = \mu (H + M), \quad \Div B = 0, \quad \Curl H = 0\]

Introducing a vector-potential \(A\) such that \(B = \Curl A\), and putting equations together we get

\[\Curl \mu^{-1} \Curl A = \Curl M\]

In weak form: Find \(A \in H(\Curl)\) such that

\[\int \mu^{-1} \Curl A \Curl v = \int M \Curl v \qquad \forall \, v \in H(\Curl)\]

Usually, the permeability \(\mu\) is given as \(\mu = \mu_r \mu_0\), with \(\mu_0 = 4 \pi 10^{-7}\) the permeability of vacuum.

[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import *

Geometric model and meshing of a bar magnet:

[2]:
# box = OrthoBrick(Pnt(-3,-3,-3),Pnt(3,3,3)).bc("outer")
# magnet = Cylinder(Pnt(-1,0,0),Pnt(1,0,0), 0.3) * OrthoBrick(Pnt(-1,-3,-3),Pnt(1,3,3))
# air = box - magnet
box = Box( (-3,-3,-3), (3,3,3))
box.faces.name = "outer"

magnet = Cylinder((-1,0,0),X, r=0.3, h=2)
magnet.mat("magnet")
magnet.faces.col = (1,0,0)

air = box-magnet
air.mat("air")
shape = Glue([air,magnet])
geo = OCCGeometry(shape)

Draw (shape, clipping={ "z" : -1, "function":True})

mesh = Mesh(geo.GenerateMesh(maxh=2, curvaturesafety=1))
mesh.Curve(3);
[3]:
mesh.GetMaterials(), mesh.GetBoundaries()
[3]:
(('air', 'magnet'),
 ('outer',
  'outer',
  'outer',
  'outer',
  'outer',
  'outer',
  'default',
  'default',
  'default'))

Define space, forms and preconditioner.

  • To obtain a regular system matrix, we regularize by adding a very small \(L_2\) term.

  • We solve magnetostatics, so we can gauge by adding and arbitrary gradient field. A cheap possibility is to delete all basis-functions which are gradients (flag 'nograds')

[4]:
fes = HCurl(mesh, order=3, dirichlet="outer", nograds=True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()

from math import pi
mu0 = 4*pi*1e-7
mur = mesh.MaterialCF({"magnet" : 1000}, default=1)

a = BilinearForm(fes)
a += 1/(mu0*mur)*curl(u)*curl(v)*dx + 1e-8/(mu0*mur)*u*v*dx
c = Preconditioner(a, "bddc")

f = LinearForm(fes)
mag = mesh.MaterialCF({"magnet" : (1,0,0)}, default=(0,0,0))
f += mag*curl(v) * dx("magnet")
ndof = 32867

Assemble system and setup preconditioner using task-parallelization:

[5]:
with TaskManager():
    a.Assemble()
    f.Assemble()

Finally, declare GridFunction and solve by preconditioned CG iteration:

[6]:
gfu = GridFunction(fes)
with TaskManager():
    solvers.CG(sol=gfu.vec, rhs=f.vec, mat=a.mat, pre=c.mat, printrates=True)
CG iteration 1, residual = 0.004809678530125142
CG iteration 2, residual = 0.0033223190132442475
CG iteration 3, residual = 0.0033115883177540204
CG iteration 4, residual = 0.0027467579779245767
CG iteration 5, residual = 0.001465876527059533
CG iteration 6, residual = 0.0012167024999244318
CG iteration 7, residual = 0.0008096582309573268
CG iteration 8, residual = 0.0006570076838868007
CG iteration 9, residual = 0.0004750869183442872
CG iteration 10, residual = 0.000362242140744759
CG iteration 11, residual = 0.0002544183424853311
CG iteration 12, residual = 0.00016194989094436932
CG iteration 13, residual = 0.00011358302702051987
CG iteration 14, residual = 8.950382818005738e-05
CG iteration 15, residual = 5.3941268122043825e-05
CG iteration 16, residual = 3.916041783332573e-05
CG iteration 17, residual = 2.7082316420829275e-05
CG iteration 18, residual = 1.8249560327733235e-05
CG iteration 19, residual = 1.3584015217515725e-05
CG iteration 20, residual = 9.857508073207593e-06
CG iteration 21, residual = 1.1675262913049378e-05
CG iteration 22, residual = 5.700512237335951e-06
CG iteration 23, residual = 3.593920197545306e-06
CG iteration 24, residual = 2.558909495085835e-06
CG iteration 25, residual = 1.9779478129416e-06
CG iteration 26, residual = 1.2770934683163124e-06
CG iteration 27, residual = 8.740832403683061e-07
CG iteration 28, residual = 5.9272287468577e-07
CG iteration 29, residual = 4.0089017034467996e-07
CG iteration 30, residual = 2.8564581969581453e-07
CG iteration 31, residual = 2.0292685846562422e-07
CG iteration 32, residual = 1.3199636985896312e-07
CG iteration 33, residual = 9.850315478126331e-08
CG iteration 34, residual = 6.73429523921435e-08
CG iteration 35, residual = 4.755958473508721e-08
CG iteration 36, residual = 2.9145086250900104e-08
CG iteration 37, residual = 2.3956909456043794e-08
CG iteration 38, residual = 2.5191589834783e-08
CG iteration 39, residual = 1.3098384590779796e-08
CG iteration 40, residual = 8.395997797583647e-09
CG iteration 41, residual = 5.7119825458954665e-09
CG iteration 42, residual = 4.181049879346821e-09
CG iteration 43, residual = 2.7949493399013464e-09
CG iteration 44, residual = 1.8595331197628286e-09
CG iteration 45, residual = 1.2654495205480003e-09
CG iteration 46, residual = 8.583836398400052e-10
CG iteration 47, residual = 5.766587407510161e-10
CG iteration 48, residual = 4.217770315950037e-10
CG iteration 49, residual = 2.76118831932744e-10
CG iteration 50, residual = 2.1705301697789788e-10
CG iteration 51, residual = 1.2859345158891253e-10
CG iteration 52, residual = 8.632760362238528e-11
CG iteration 53, residual = 6.539547930940807e-11
CG iteration 54, residual = 7.9483529669519e-11
CG iteration 55, residual = 3.528978428089285e-11
CG iteration 56, residual = 2.565719053919771e-11
CG iteration 57, residual = 2.094558645707265e-11
CG iteration 58, residual = 1.2838966424987052e-11
CG iteration 59, residual = 8.49327211445572e-12
CG iteration 60, residual = 5.92302644212281e-12
CG iteration 61, residual = 3.942583242720847e-12
CG iteration 62, residual = 2.6956140757343445e-12
CG iteration 63, residual = 1.738707690777863e-12
CG iteration 64, residual = 1.2104137017379473e-12
CG iteration 65, residual = 7.623360992882904e-13
CG iteration 66, residual = 4.941728660720513e-13
CG iteration 67, residual = 3.2073555031834186e-13
CG iteration 68, residual = 2.144961714295383e-13
CG iteration 69, residual = 2.375315891001139e-13
CG iteration 70, residual = 1.4895979423942704e-13
CG iteration 71, residual = 9.436871107258467e-14
CG iteration 72, residual = 6.131272336612453e-14
CG iteration 73, residual = 4.206979116844615e-14
CG iteration 74, residual = 2.7628496434566027e-14
CG iteration 75, residual = 1.7669215053832434e-14
CG iteration 76, residual = 1.1678473076869335e-14
CG iteration 77, residual = 8.654341639054825e-15
CG iteration 78, residual = 6.7571991864403744e-15
CG iteration 79, residual = 4.054891908370276e-15
[7]:
Draw (curl(gfu), mesh, "B-field", draw_surf=False, \
      clipping = { "z" : -1, "function":True}, \
      vectors = { "grid_size":50}, min=0, max=2e-5);
[ ]:

[ ]: