This page was generated from unit-1.1-poisson/poisson.ipynb.
1.1 First NGSolve example¶
Let us solve the Poisson problem of finding \(u\) satisfying
Quick steps to solution:¶
1. Import NGSolve and Netgen Python modules:¶
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
2. Generate an unstructured mesh¶
[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
mesh.nv, mesh.ne # number of vertices & elements
[2]:
(39, 56)
Here we prescribed a maximal mesh-size of 0.2 using the maxh
flag.
[3]:
Draw(mesh);
3. Declare a finite element space:¶
[4]:
fes = H1(mesh, order=2, dirichlet="bottom|right")
fes.ndof # number of unknowns in this space
[4]:
133
Python’s help system displays further documentation.
[5]:
help(fes)
Help on H1 in module ngsolve.comp object:
class H1(FESpace)
| An H1-conforming finite element space.
|
| The H1 finite element space consists of continuous and
| element-wise polynomial functions. It uses a hierarchical (=modal)
| basis built from integrated Legendre polynomials on tensor-product elements,
| and Jaboci polynomials on simplicial elements.
|
| Boundary values are well defined. The function can be used directly on the
| boundary, using the trace operator is optional.
|
| The H1 space supports variable order, which can be set individually for edges,
| faces and cells.
|
| Internal degrees of freedom are declared as local dofs and are eliminated
| if static condensation is on.
|
| The wirebasket consists of all vertex dofs. Optionally, one can include the
| first (the quadratic bubble) edge basis function, or all edge basis functions
| into the wirebasket.
|
| Keyword arguments can be:
|
| order: int = 1
| order of finite element space
| complex: bool = False
| Set if FESpace should be complex
| dirichlet: regexpr
| Regular expression string defining the dirichlet boundary.
| More than one boundary can be combined by the | operator,
| i.e.: dirichlet = 'top|right'
| dirichlet_bbnd: regexpr
| Regular expression string defining the dirichlet bboundary,
| i.e. points in 2D and edges in 3D.
| More than one boundary can be combined by the | operator,
| i.e.: dirichlet_bbnd = 'top|right'
| dirichlet_bbbnd: regexpr
| Regular expression string defining the dirichlet bbboundary,
| i.e. points in 3D.
| More than one boundary can be combined by the | operator,
| i.e.: dirichlet_bbbnd = 'top|right'
| definedon: Region or regexpr
| FESpace is only defined on specific Region, created with mesh.Materials('regexpr')
| or mesh.Boundaries('regexpr'). If given a regexpr, the region is assumed to be
| mesh.Materials('regexpr').
| dim: int = 1
| Create multi dimensional FESpace (i.e. [H1]^3)
| dgjumps: bool = False
| Enable discontinuous space for DG methods, this flag is needed for DG methods,
| since the dofs have a different coupling then and this changes the sparsity
| pattern of matrices.
| autoupdate: bool = False
| Automatically update on a change to the mesh.
| low_order_space: bool = True
| Generate a lowest order space together with the high-order space,
| needed for some preconditioners.
| hoprolongation: bool = False
| Create high order prolongation operators,
| only available for H1 and L2 on simplicial meshes
| order_policy: ORDER_POLICY = ORDER_POLICY.OLDSTYLE
| CONSTANT .. use the same fixed order for all elements,
| NODAL ..... use the same order for nodes of same shape,
| VARIABLE ... use an individual order for each edge, face and cell,
| OLDSTYLE .. as it used to be for the last decade
| print: bool = False
| (historic) print some output into file set by 'SetTestoutFile'
| wb_withedges: bool = true(3D) / false(2D)
| use lowest-order edge dofs for BDDC wirebasket
| wb_fulledges: bool = false
| use all edge dofs for BDDC wirebasket
| hoprolongation: bool = false
| (experimental, only trigs) creates high order prolongation,
| and switches off low-order space
|
| Method resolution order:
| H1
| FESpace
| NGS_Object
| pybind11_builtins.pybind11_object
| builtins.object
|
| Methods defined here:
|
| __getstate__(...)
| __getstate__(self: ngsolve.comp.FESpace) -> tuple
|
| __init__(...)
| __init__(self: ngsolve.comp.H1, mesh: ngsolve.comp.Mesh, **kwargs) -> None
|
| __setstate__(...)
| __setstate__(self: ngsolve.comp.H1, arg0: tuple) -> None
|
| ----------------------------------------------------------------------
| Static methods defined here:
|
| __flags_doc__(...) method of builtins.PyCapsule instance
| __flags_doc__() -> dict
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
|
| ----------------------------------------------------------------------
| Methods inherited from FESpace:
|
| ApplyM(...)
| ApplyM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
|
| Apply mass-matrix. Available only for L2-like spaces
|
| ConvertL2Operator(...)
| ConvertL2Operator(self: ngsolve.comp.FESpace, l2space: ngsolve.comp.FESpace) -> BaseMatrix
|
| CouplingType(...)
| CouplingType(self: ngsolve.comp.FESpace, dofnr: int) -> ngsolve.comp.COUPLING_TYPE
|
|
| Get coupling type of a degree of freedom.
|
| Parameters:
|
| dofnr : int
| input dof number
|
| CreateDirectSolverCluster(...)
| CreateDirectSolverCluster(self: ngsolve.comp.FESpace, **kwargs) -> list
|
| CreateSmoothingBlocks(...)
| CreateSmoothingBlocks(self: ngsolve.comp.FESpace, **kwargs) -> pyngcore.pyngcore.Table_I
|
|
| Create table of smoothing blocks for block-Jacobi/block-Gauss-Seidel preconditioners.
|
| Every table entry describes the set of dofs belonging a Jacobi/Gauss-Seidel block.
|
| Paramters:
|
| blocktype: string | [ string ] | int
| describes blocktype.
| string form ["vertex", "edge", "face", "facet", "vertexedge", ....]
| or list of strings for combining multiple blocktypes
| int is for backward compatibility with old style blocktypes
|
| condense: bool = False
| exclude dofs eliminated by static condensation
|
| Elements(...)
| Elements(*args, **kwargs)
| Overloaded function.
|
| 1. Elements(self: ngsolve.comp.FESpace, VOL_or_BND: ngsolve.comp.VorB = <VorB.VOL: 0>) -> ngsolve.comp.FESpaceElementRange
|
|
| Returns an iterable range of elements.
|
| Parameters:
|
| VOL_or_BND : ngsolve.comp.VorB
| input VOL, BND, BBND,...
|
|
|
| 2. Elements(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.Region) -> Iterator[ngsolve.comp.FESpaceElement]
|
| FinalizeUpdate(...)
| FinalizeUpdate(self: ngsolve.comp.FESpace) -> None
|
| finalize update
|
| FreeDofs(...)
| FreeDofs(self: ngsolve.comp.FESpace, coupling: bool = False) -> pyngcore.pyngcore.BitArray
|
|
|
| Return BitArray of free (non-Dirichlet) dofs\n
| coupling=False ... all free dofs including local dofs\n
| coupling=True .... only element-boundary free dofs
|
| Parameters:
|
| coupling : bool
| input coupling
|
| GetDofNrs(...)
| GetDofNrs(*args, **kwargs)
| Overloaded function.
|
| 1. GetDofNrs(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> tuple
|
|
|
| Parameters:
|
| ei : ngsolve.comp.ElementId
| input element id
|
|
|
| 2. GetDofNrs(self: ngsolve.comp.FESpace, ni: ngsolve.comp.NodeId) -> tuple
|
|
|
| Parameters:
|
| ni : ngsolve.comp.NodeId
| input node id
|
| GetDofs(...)
| GetDofs(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> pyngcore.pyngcore.BitArray
|
|
| Returns all degrees of freedom in given region.
|
| Parameters:
|
| region : ngsolve.comp.Region
| input region
|
| GetFE(...)
| GetFE(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> object
|
|
| Get the finite element to corresponding element id.
|
| Parameters:
|
| ei : ngsolve.comp.ElementId
| input element id
|
| GetOrder(...)
| GetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId) -> int
|
| return order of node.
| by now, only isotropic order is supported here
|
| GetTrace(...)
| GetTrace(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
|
| GetTraceTrans(...)
| GetTraceTrans(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
|
| HideAllDofs(...)
| HideAllDofs(self: ngsolve.comp.FESpace, component: object = <ngsolve.ngstd.DummyArgument>) -> None
|
| set all visible coupling types to HIDDEN_DOFs (will be overwritten by any Update())
|
| InvM(...)
| InvM(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None) -> BaseMatrix
|
| Mass(...)
| Mass(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None, definedon: Optional[ngsolve.comp.Region] = None) -> BaseMatrix
|
| ParallelDofs(...)
| ParallelDofs(self: ngsolve.comp.FESpace) -> ngsolve.la.ParallelDofs
|
| Return dof-identification for MPI-distributed meshes
|
| Prolongation(...)
| Prolongation(self: ngsolve.comp.FESpace) -> ngmg::Prolongation
|
| Return prolongation operator for use in multi-grid
|
| Range(...)
| Range(self: ngsolve.comp.FESpace, arg0: int) -> ngsolve.la.DofRange
|
| deprecated, will be only available for ProductSpace
|
| SetCouplingType(...)
| SetCouplingType(*args, **kwargs)
| Overloaded function.
|
| 1. SetCouplingType(self: ngsolve.comp.FESpace, dofnr: int, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
|
|
| Set coupling type of a degree of freedom.
|
| Parameters:
|
| dofnr : int
| input dof number
|
| coupling_type : ngsolve.comp.COUPLING_TYPE
| input coupling type
|
|
|
| 2. SetCouplingType(self: ngsolve.comp.FESpace, dofnrs: ngsolve.ngstd.IntRange, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
|
|
| Set coupling type for interval of dofs.
|
| Parameters:
|
| dofnrs : Range
| range of dofs
|
| coupling_type : ngsolve.comp.COUPLING_TYPE
| input coupling type
|
| SetDefinedOn(...)
| SetDefinedOn(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> None
|
|
| Set the regions on which the FESpace is defined.
|
| Parameters:
|
| region : ngsolve.comp.Region
| input region
|
| SetOrder(...)
| SetOrder(*args, **kwargs)
| Overloaded function.
|
| 1. SetOrder(self: ngsolve.comp.FESpace, element_type: ngsolve.fem.ET, order: int) -> None
|
|
|
| Parameters:
|
| element_type : ngsolve.fem.ET
| input element type
|
| order : object
| input polynomial order
|
|
| 2. SetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId, order: int) -> None
|
|
|
| Parameters:
|
| nodeid : ngsolve.comp.NodeId
| input node id
|
| order : int
| input polynomial order
|
| SolveM(...)
| SolveM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
|
|
| Solve with the mass-matrix. Available only for L2-like spaces.
|
| Parameters:
|
| vec : ngsolve.la.BaseVector
| input right hand side vector
|
| rho : ngsolve.fem.CoefficientFunction
| input CF
|
| TestFunction(...)
| TestFunction(self: ngsolve.comp.FESpace) -> object
|
| Return a proxy to be used as a testfunction for :any:`Symbolic Integrators<symbolic-integrators>`
|
| TnT(...)
| TnT(self: ngsolve.comp.FESpace) -> tuple[object, object]
|
| Return a tuple of trial and testfunction
|
| TraceOperator(...)
| TraceOperator(self: ngsolve.comp.FESpace, tracespace: ngsolve.comp.FESpace, average: bool) -> BaseMatrix
|
| TrialFunction(...)
| TrialFunction(self: ngsolve.comp.FESpace) -> object
|
| Return a proxy to be used as a trialfunction in :any:`Symbolic Integrators<symbolic-integrators>`
|
| Update(...)
| Update(self: ngsolve.comp.FESpace) -> None
|
| update space after mesh-refinement
|
| UpdateDofTables(...)
| UpdateDofTables(self: ngsolve.comp.FESpace) -> None
|
| update dof-tables after changing polynomial order distribution
|
| __eq__(...)
| __eq__(self: ngsolve.comp.FESpace, space: ngsolve.comp.FESpace) -> bool
|
| __mul__(...)
| __mul__(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace) -> ngcomp::CompoundFESpace
|
| __pow__(...)
| __pow__(self: ngsolve.comp.FESpace, arg0: int) -> ngcomp::CompoundFESpaceAllSame
|
| __str__(...)
| __str__(self: ngsolve.comp.FESpace) -> str
|
| __timing__(...)
| __timing__(self: ngsolve.comp.FESpace) -> object
|
| ----------------------------------------------------------------------
| Static methods inherited from FESpace:
|
| __special_treated_flags__(...) method of builtins.PyCapsule instance
| __special_treated_flags__() -> dict
|
| ----------------------------------------------------------------------
| Readonly properties inherited from FESpace:
|
| autoupdate
|
| components
| deprecated, will be only available for ProductSpace
|
| couplingtype
|
| dim
| multi-dim of FESpace
|
| globalorder
| query global order of space
|
| is_complex
|
| loembedding
|
| lospace
|
| mesh
| mesh on which the FESpace is created
|
| ndof
| number of degrees of freedom
|
| ndofglobal
| global number of dofs on MPI-distributed mesh
|
| type
| type of finite element space
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from FESpace:
|
| __hash__ = None
|
| ----------------------------------------------------------------------
| Readonly properties inherited from NGS_Object:
|
| __memory__
|
| flags
|
| ----------------------------------------------------------------------
| Data descriptors inherited from NGS_Object:
|
| name
|
| ----------------------------------------------------------------------
| Static methods inherited from pybind11_builtins.pybind11_object:
|
| __new__(*args, **kwargs) class method of pybind11_builtins.pybind11_object
| Create and return a new object. See help(type) for accurate signature.
4. Declare test function, trial function, and grid function¶
Test and trial function are symbolic objects - called
ProxyFunctions
- that help you construct bilinear forms (and have no space to hold solutions).GridFunctions
, on the other hand, represent functions in the finite element space and contains memory to hold coefficient vectors.
[6]:
u = fes.TrialFunction() # symbolic object
v = fes.TestFunction() # symbolic object
gfu = GridFunction(fes) # solution
Alternately, you can get both the trial and test variables at once:
[7]:
u, v = fes.TnT()
5. Define and assemble linear and bilinear forms:¶
[8]:
a = BilinearForm(fes)
a += grad(u)*grad(v)*dx
a.Assemble()
f = LinearForm(fes)
f += x*v*dx
f.Assemble();
Alternately, we can do one-liners:
[9]:
a = BilinearForm(grad(u)*grad(v)*dx).Assemble()
f = LinearForm(x*v*dx).Assemble()
You can examine the linear system in more detail:
[10]:
print(f.vec)
0.000333333
0.00873506
0.00633333
0.000510926
0.00430724
0.00890537
0.0106804
0.0112774
0.0148637
0.0166495
0.0150628
0.0185037
0.0216167
0.0109997
0.00797031
0.00292185
0.000628106
0.0010144
0.00172207
0.00185741
0.0142294
0.01997
0.0225059
0.020015
0.0311335
0.0259928
0.028898
0.0191106
0.0227498
0.00992941
0.00267856
0.00497134
0.0080662
0.0203373
0.0164825
0.0204557
0.0134827
0.0158788
0.018219
-6.66667e-05
-3.33333e-05
-0.000516153
-0.000566493
-0.0010733
-0.0008
-0.000766667
-5.90186e-05
-1.43029e-05
-7.99565e-05
-0.000293781
-0.000218551
-0.000469969
-0.000398925
-0.000689288
-0.000822998
-0.000483647
-0.000847511
-0.00093399
-0.000895046
-0.000915843
-0.00074941
-0.00109658
-0.00126105
-0.000643908
-0.00140539
-0.00131192
-0.000648404
-0.00121351
-0.00121755
-0.00162374
-0.00149151
-0.00048888
-0.00145143
-0.00110173
-0.000452064
-0.000914624
-0.00088675
-0.000208119
-0.0007941
-0.000543629
-0.000302341
-0.000167379
-2.0832e-05
-6.88223e-05
-8.44745e-05
-2.94073e-05
-0.000116264
-0.000137817
-4.79891e-05
-0.000243969
-0.000195256
-0.000257349
-0.000787648
-0.00044492
-0.000660183
-0.000883158
-0.000835026
-0.000794567
-0.000892677
-0.0010382
-0.000974429
-0.00102675
-0.00114594
-0.000985686
-0.000923147
-0.00108379
-0.0008854
-0.00086299
-0.00104694
-0.000933801
-0.000848623
-0.000866758
-0.000666847
-0.000884373
-0.000729732
-0.000868298
-0.000206371
-0.000281267
-0.000500567
-0.000145299
-0.000258405
-0.000362166
-0.000550055
-0.000437637
-0.00077891
-0.000777094
-0.000731175
-0.000607743
-0.000717949
-0.000729496
-0.000805781
-0.000739587
-0.000678956
[11]:
print(a.mat)
Row 0: 0: 1 4: -0.5 19: -0.5 39: -0.0833333 40: -0.0833333 50: 0.166667
Row 1: 1: 0.828732 7: -0.195774 8: -0.197948 23: -0.43501 41: -0.0360819 42: -0.0364197 43: -0.0656203 59: 0.0687109 61: 0.069411
Row 2: 2: 1 11: -0.5 12: -0.5 44: -0.0833333 45: -0.0833333 69: 0.166667
Row 3: 3: 0.834885 15: -0.164012 16: -0.157951 30: -0.512921 46: -0.0431063 47: -0.0423806 48: -0.0536605 81: 0.0704417 83: 0.0687058
Row 4: 0: -0.5 4: 1.89671 5: -0.546735 19: -0.180532 20: -0.66944 39: 5.83717e-17 40: 0.0833333 49: -0.0544706 50: -0.140436 51: -0.121211 53: 0.145593 91: 0.0871914
Row 5: 4: -0.546735 5: 1.88547 6: -0.352441 20: -0.196284 21: -0.790007 49: -0.0136061 51: 0.104729 52: -0.0481159 53: -0.174674 54: -0.0778481 56: 0.106856 92: 0.10266
Row 6: 5: -0.352441 6: 1.75375 7: -0.265716 21: -0.432048 22: -0.703548 52: -0.0385388 54: 0.097279 55: -0.0537377 56: -0.12226 57: -0.0777552 58: 0.0980238 95: 0.0969894
Row 7: 1: -0.195774 6: -0.265716 7: 1.822 22: -0.405418 23: -0.955095 41: -0.0839333 43: 0.116562 55: -0.0465664 57: 0.0908524 58: -0.119535 59: -0.0536322 98: 0.0962524
Row 8: 1: -0.197948 8: 1.87437 9: -0.341759 23: -1.05108 24: -0.283578 42: -0.0827377 43: 0.115729 60: -0.0333848 61: -0.0468695 62: -0.149403 64: 0.0903445 101: 0.106321
Row 9: 8: -0.341759 9: 1.74315 10: -0.259596 24: -0.651696 25: -0.490101 60: -0.055818 62: 0.112778 63: -0.0349443 64: -0.103699 65: -0.0960639 67: 0.0782102 102: 0.0995372
Row 10: 9: -0.259596 10: 1.76903 11: -0.259654 25: -0.823099 26: -0.426681 63: -0.0694609 65: 0.112727 66: -0.0367441 67: -0.0776353 68: -0.110998 70: 0.0800198 105: 0.102092
Row 11: 2: -0.5 10: -0.259654 11: 1.96958 12: -0.139204 26: -1.07072 44: 0 45: 0.0833333 66: -0.0669124 68: 0.110188 69: -0.194875 70: -0.0664764 72: 0.134742
Row 12: 2: -0.5 11: -0.139204 12: 1.81482 13: -0.275945 26: -0.20179 27: -0.697885 44: 0.0833333 45: 0 69: -0.115666 70: 0.0555335 71: -0.0418546 72: -0.0976603 73: -0.0472897 75: 0.0878455 108: 0.0757584
Row 13: 12: -0.275945 13: 1.79186 14: -0.426433 27: -0.746323 28: -0.343162 71: -0.0571403 73: 0.103131 74: -0.0399256 75: -0.063259 76: -0.138319 78: 0.110998 110: 0.084515
Row 14: 13: -0.426433 14: 1.77214 15: -0.271016 28: -0.405887 29: -0.668803 74: -0.0369995 76: 0.108072 77: -0.0450239 78: -0.137515 79: -0.0758177 80: 0.0901932 112: 0.0970916
Row 15: 3: -0.164012 14: -0.271016 15: 1.81591 29: -0.463066 30: -0.917816 46: -0.0818566 48: 0.109192 77: -0.054447 79: 0.0996163 80: -0.116282 81: -0.0500661 116: 0.0938434
Row 16: 3: -0.157951 16: 1.82092 17: -0.237555 30: -0.936175 31: -0.489235 47: -0.0848367 48: 0.111162 82: -0.0553671 83: -0.0524972 84: -0.110785 86: 0.0949597 119: 0.0973645
Row 17: 16: -0.237555 17: 1.74436 18: -0.336551 31: -0.666886 32: -0.50337 82: -0.0500457 84: 0.0896382 85: -0.0444322 86: -0.0790554 87: -0.117194 90: 0.100524 120: 0.100565
Row 18: 17: -0.336551 18: 1.8616 19: -0.527472 20: -0.241774 32: -0.755808 85: -0.0442896 87: 0.100381 88: -0.015565 89: -0.16959 90: -0.0808224 91: 0.103477 93: 0.106409
Row 19: 0: -0.5 4: -0.180532 18: -0.527472 19: 1.89097 20: -0.682967 39: 0.0833333 40: 6.245e-17 50: -0.143274 51: 0.0900292 88: -0.0538873 89: 0.141799 91: -0.118001
Row 20: 4: -0.66944 5: -0.196284 18: -0.241774 19: -0.682967 20: 3.47846 21: -0.529072 32: -0.463883 34: -0.695042 49: 0.0680767 50: 0.117043 51: -0.0735467 53: -0.106564 54: 0.0712017 88: 0.0694523 89: -0.100166 90: 0.0710095 91: -0.0726677 92: -0.0767684 93: -0.0829105 94: -0.0671198 97: 0.0937453 122: 0.0892148
Row 21: 5: -0.790007 6: -0.432048 20: -0.529072 21: 3.54163 22: -0.566892 33: -0.74118 34: -0.482434 52: 0.0866548 53: 0.135646 54: -0.0906326 56: -0.0977964 57: 0.0831496 92: -0.135435 94: 0.0879677 95: -0.0896637 96: -0.0733244 97: -0.10342 100: 0.100996 124: 0.0958583
Row 22: 6: -0.703548 7: -0.405418 21: -0.566892 22: 3.51389 23: -0.735409 24: -0.547842 33: -0.554777 55: 0.100304 56: 0.113201 57: -0.0962468 58: -0.109466 59: 0.0767314 95: -0.107352 96: 0.0886334 98: -0.0570951 99: -0.115471 100: -0.100017 101: 0.102932 103: 0.103846
Row 23: 1: -0.43501 7: -0.955095 8: -1.05108 22: -0.735409 23: 3.76027 24: -0.583672 41: 0.120015 42: 0.119157 43: -0.166671 58: 0.130977 59: -0.0918101 61: -0.0896687 62: 0.145692 98: -0.119279 99: 0.11087 101: -0.159283
Row 24: 8: -0.283578 9: -0.651696 22: -0.547842 23: -0.583672 24: 3.42538 25: -0.432896 33: -0.399388 37: -0.526313 60: 0.0892028 61: 0.0671272 62: -0.109067 64: -0.07836 65: 0.0977732 98: 0.0801216 99: -0.0850449 100: 0.0962304 101: -0.0499701 102: -0.0948866 103: -0.100845 104: -0.0527235 107: 0.0692628 125: 0.0711795
Row 25: 9: -0.490101 10: -0.823099 24: -0.432896 25: 3.58075 26: -0.51662 35: -0.398376 37: -0.919662 63: 0.104405 64: 0.0917145 65: -0.114436 67: -0.080167 68: 0.112945 102: -0.130489 104: 0.110924 105: -0.110081 106: -0.110408 107: -0.0512114 109: 0.0832393 129: 0.0935649
Row 26: 10: -0.426681 11: -1.07072 12: -0.20179 25: -0.51662 26: 3.72303 27: -0.801924 35: -0.705295 66: 0.103656 67: 0.0795922 68: -0.112135 69: 0.143875 70: -0.0690769 72: -0.201931 73: 0.0916879 105: -0.0969936 106: 0.103505 108: -0.0562238 109: -0.0841455 111: 0.09819
Row 27: 12: -0.697885 13: -0.746323 26: -0.801924 27: 3.70186 28: -0.78084 35: -0.674884 71: 0.0989949 72: 0.164849 73: -0.147529 75: -0.110283 76: 0.135675 108: -0.120983 109: 0.0897882 110: -0.133204 111: -0.104977 113: 0.127669
Row 28: 13: -0.343162 14: -0.405887 27: -0.78084 28: 3.4438 29: -0.579412 35: -0.387095 36: -0.569649 38: -0.377753 74: 0.076925 75: 0.0856965 76: -0.105428 78: -0.0904765 79: 0.0811993 110: -0.0397802 111: 0.0842238 112: -0.0751098 113: -0.0901223 114: -0.0805661 115: -0.0924837 118: 0.0904793 130: 0.0704143 131: 0.0850283
Row 29: 14: -0.668803 15: -0.463066 28: -0.579412 29: 3.51847 30: -0.682657 31: -0.574344 36: -0.550188 77: 0.0994709 78: 0.116994 79: -0.104998 80: -0.101799 81: 0.0795062 112: -0.120582 114: 0.100156 116: -0.0557497 117: -0.0945602 118: -0.108723 119: 0.0900197 121: 0.100265
Row 30: 3: -0.512921 15: -0.917816 16: -0.936175 29: -0.682657 30: 3.70011 31: -0.65054 46: 0.124963 47: 0.127217 48: -0.166693 80: 0.127888 81: -0.0998818 83: -0.0945679 84: 0.12338 116: -0.127349 117: 0.113237 119: -0.128193
Row 31: 16: -0.489235 17: -0.666886 29: -0.574344 30: -0.65054 31: 3.50264 32: -0.54324 36: -0.578395 82: 0.105413 83: 0.0783594 84: -0.102233 86: -0.100444 87: 0.106179 116: 0.0892549 117: -0.102008 118: 0.108477 119: -0.059191 120: -0.111729 121: -0.108168 123: 0.0960903
Row 32: 17: -0.50337 18: -0.755808 20: -0.463883 31: -0.54324 32: 3.52106 34: -0.590839 36: -0.663921 85: 0.0887218 86: 0.0845401 87: -0.0893669 89: 0.127957 90: -0.090711 93: -0.139279 94: 0.0886357 120: -0.0877797 121: 0.0937796 122: -0.0933717 123: -0.0863352 127: 0.103209
Row 33: 21: -0.74118 22: -0.554777 24: -0.399388 33: 3.5711 34: -0.567872 37: -0.917504 38: -0.390377 95: 0.100026 96: -0.096241 97: 0.119745 99: 0.0896463 100: -0.0972098 103: -0.129815 104: 0.106733 124: -0.113287 125: -0.0446607 126: -0.11397 128: 0.0881878 132: 0.0908447
Row 34: 20: -0.695042 21: -0.482434 32: -0.590839 33: -0.567872 34: 3.50498 36: -0.453329 38: -0.715467 92: 0.109543 93: 0.11578 94: -0.109484 96: 0.080932 97: -0.11007 122: -0.100779 123: 0.0834713 124: -0.0852611 126: 0.0989745 127: -0.103379 128: -0.0751922 131: 0.0954622
Row 35: 25: -0.398376 26: -0.705295 27: -0.674884 28: -0.387095 35: 3.55956 37: -0.661211 38: -0.732703 105: 0.104983 106: -0.118983 107: 0.080396 108: 0.101448 109: -0.088882 110: 0.0884695 111: -0.077437 113: -0.147633 115: 0.123679 129: -0.0644794 130: -0.0958469 132: 0.0942853
Row 36: 28: -0.569649 29: -0.550188 31: -0.578395 32: -0.663921 34: -0.453329 36: 3.48945 38: -0.673969 112: 0.0986001 114: -0.1153 115: 0.111641 117: 0.0833311 118: -0.0902331 120: 0.0989443 121: -0.0858763 122: 0.104936 123: -0.0932263 127: -0.113503 128: 0.0841228 131: -0.083436
Row 37: 24: -0.526313 25: -0.919662 33: -0.917504 35: -0.661211 37: 3.69615 38: -0.671464 102: 0.125838 103: 0.126814 104: -0.164933 106: 0.125886 107: -0.0984473 125: -0.106982 126: 0.133086 129: -0.120086 130: 0.104402 132: -0.125577
Row 38: 28: -0.377753 33: -0.390377 34: -0.715467 35: -0.732703 36: -0.673969 37: -0.671464 38: 3.56173 113: 0.110086 114: 0.0957097 115: -0.142836 124: 0.10269 125: 0.0804635 126: -0.118091 127: 0.113673 128: -0.0971183 129: 0.0910005 130: -0.0789689 131: -0.0970544 132: -0.0595534
Row 39: 0: -0.0833333 4: 5.83717e-17 19: 0.0833333 39: 0.0416667 40: 1.73472e-17 50: -0.0208333
Row 40: 0: -0.0833333 4: 0.0833333 19: 6.245e-17 39: 1.73472e-17 40: 0.0416667 50: -0.0208333
Row 41: 1: -0.0360819 7: -0.0839333 23: 0.120015 41: 0.038161 43: -0.0209833 59: -0.00902048
Row 42: 1: -0.0364197 8: -0.0827377 23: 0.119157 42: 0.0380372 43: -0.0206844 61: -0.00910492
Row 43: 1: -0.0656203 7: 0.116562 8: 0.115729 23: -0.166671 41: -0.0209833 42: -0.0206844 43: 0.0761982 59: -0.00815724 61: -0.00824784
Row 44: 2: -0.0833333 11: 0 12: 0.0833333 44: 0.0416667 45: 0 69: -0.0208333
Row 45: 2: -0.0833333 11: 0.0833333 12: 0 44: 0 45: 0.0416667 69: -0.0208333
Row 46: 3: -0.0431063 15: -0.0818566 30: 0.124963 46: 0.0380746 48: -0.0204642 81: -0.0107766
Row 47: 3: -0.0423806 16: -0.0848367 30: 0.127217 47: 0.0383856 48: -0.0212092 83: -0.0105951
Row 48: 3: -0.0536605 15: 0.109192 16: 0.111162 30: -0.166693 46: -0.0204642 47: -0.0212092 48: 0.0764602 81: -0.00683385 83: -0.00658129
Row 49: 4: -0.0544706 5: -0.0136061 20: 0.0680767 49: 0.0397998 51: -0.00340152 53: -0.0136176
Row 50: 0: 0.166667 4: -0.140436 19: -0.143274 20: 0.117043 39: -0.0208333 40: -0.0208333 50: 0.0784497 51: -0.0149851 91: -0.0142757
Row 51: 4: -0.121211 5: 0.104729 19: 0.0900292 20: -0.0735467 49: -0.00340152 50: -0.0149851 51: 0.0765828 53: -0.0227806 91: -0.00752216
Row 52: 5: -0.0481159 6: -0.0385388 21: 0.0866548 52: 0.0363487 54: -0.00963471 56: -0.012029
Row 53: 4: 0.145593 5: -0.174674 20: -0.106564 21: 0.135646 49: -0.0136176 51: -0.0227806 53: 0.0784882 54: -0.0130234 92: -0.020888
Row 54: 5: -0.0778481 6: 0.097279 20: 0.0712017 21: -0.0906326 52: -0.00963471 53: -0.0130234 54: 0.0750371 56: -0.014685 92: -0.00477698
Row 55: 6: -0.0537377 7: -0.0465664 22: 0.100304 55: 0.0361475 57: -0.0116416 58: -0.0134344
Row 56: 5: 0.106856 6: -0.12226 21: -0.0977964 22: 0.113201 52: -0.012029 54: -0.014685 56: 0.0730162 57: -0.0124201 95: -0.0158801
Row 57: 6: -0.0777552 7: 0.0908524 21: 0.0831496 22: -0.0962468 55: -0.0116416 56: -0.0124201 57: 0.072815 58: -0.0110715 95: -0.00836729
Row 58: 6: 0.0980238 7: -0.119535 22: -0.109466 23: 0.130977 55: -0.0134344 57: -0.0110715 58: 0.0741427 59: -0.013932 98: -0.0188123
Row 59: 1: 0.0687109 7: -0.0536322 22: 0.0767314 23: -0.0918101 41: -0.00902048 43: -0.00815724 58: -0.013932 59: 0.0761562 98: -0.0052508
Row 60: 8: -0.0333848 9: -0.055818 24: 0.0892028 60: 0.0365406 62: -0.0139545 64: -0.00834619
Row 61: 1: 0.069411 8: -0.0468695 23: -0.0896687 24: 0.0671272 42: -0.00910492 43: -0.00824784 61: 0.0779298 62: -0.0133123 101: -0.00346954
Row 62: 8: -0.149403 9: 0.112778 23: 0.145692 24: -0.109067 60: -0.0139545 61: -0.0133123 62: 0.0764332 64: -0.0142399 101: -0.0231108
Row 63: 9: -0.0349443 10: -0.0694609 25: 0.104405 63: 0.0369178 65: -0.0173652 67: -0.00873607
Row 64: 8: 0.0903445 9: -0.103699 24: -0.07836 25: 0.0917145 60: -0.00834619 62: -0.0142399 64: 0.0726688 65: -0.0112438 102: -0.0116848
Row 65: 9: -0.0960639 10: 0.112727 24: 0.0977732 25: -0.114436 63: -0.0173652 64: -0.0112438 65: 0.0730459 67: -0.0108165 102: -0.0131995
Row 66: 10: -0.0367441 11: -0.0669124 26: 0.103656 66: 0.0367331 68: -0.0167281 70: -0.00918602
Row 67: 9: 0.0782102 10: -0.0776353 25: -0.080167 26: 0.0795922 63: -0.00873607 65: -0.0108165 67: 0.0737464 68: -0.0113057 105: -0.00859235
Row 68: 10: -0.110998 11: 0.110188 25: 0.112945 26: -0.112135 66: -0.0167281 67: -0.0113057 68: 0.0735617 70: -0.0108189 105: -0.0169306
Row 69: 2: 0.166667 11: -0.194875 12: -0.115666 26: 0.143875 44: -0.0208333 45: -0.0208333 69: 0.0834355 70: -0.0080832 72: -0.0278854
Row 70: 10: 0.0800198 11: -0.0664764 12: 0.0555335 26: -0.0690769 66: -0.00918602 68: -0.0108189 69: -0.0080832 70: 0.0785019 72: -0.00580017
Row 71: 12: -0.0418546 13: -0.0571403 27: 0.0989949 71: 0.0362464 73: -0.0142851 75: -0.0104636
Row 72: 11: 0.134742 12: -0.0976603 26: -0.201931 27: 0.164849 69: -0.0278854 70: -0.00580017 72: 0.0833057 73: -0.0225973 108: -0.0186149
Row 73: 12: -0.0472897 13: 0.103131 26: 0.0916879 27: -0.147529 71: -0.0142851 72: -0.0225973 73: 0.0777833 75: -0.0114977 108: -0.00032471
Row 74: 13: -0.0399256 14: -0.0369995 28: 0.076925 74: 0.0369993 76: -0.00924986 78: -0.00998139
Row 75: 12: 0.0878455 13: -0.063259 27: -0.110283 28: 0.0856965 71: -0.0104636 73: -0.0114977 75: 0.0744823 76: -0.0171071 110: -0.00431704
Row 76: 13: -0.138319 14: 0.108072 27: 0.135675 28: -0.105428 74: -0.00924986 75: -0.0171071 76: 0.0752351 78: -0.017768 110: -0.0168117
Row 77: 14: -0.0450239 15: -0.054447 29: 0.0994709 77: 0.03616 79: -0.0136117 80: -0.011256
Row 78: 13: 0.110998 14: -0.137515 28: -0.0904765 29: 0.116994 74: -0.00998139 76: -0.017768 78: 0.0739099 79: -0.0126377 112: -0.0166108
Row 79: 14: -0.0758177 15: 0.0996163 28: 0.0811993 29: -0.104998 77: -0.0136117 78: -0.0126377 79: 0.0730707 80: -0.0112923 112: -0.00766209
Row 80: 14: 0.0901932 15: -0.116282 29: -0.101799 30: 0.127888 77: -0.011256 79: -0.0112923 80: 0.0738148 81: -0.0141939 116: -0.0177782
Row 81: 3: 0.0704417 15: -0.0500661 29: 0.0795062 30: -0.0998818 46: -0.0107766 48: -0.00683385 80: -0.0141939 81: 0.0757293 116: -0.00568268
Row 82: 16: -0.0553671 17: -0.0500457 31: 0.105413 82: 0.0362513 84: -0.0125114 86: -0.0138418
Row 83: 3: 0.0687058 16: -0.0524972 30: -0.0945679 31: 0.0783594 47: -0.0105951 48: -0.00658129 83: 0.0757736 84: -0.0130468 119: -0.00654301
Row 84: 16: -0.110785 17: 0.0896382 30: 0.12338 31: -0.102233 82: -0.0125114 83: -0.0130468 84: 0.0736393 86: -0.00989814 119: -0.0177981
Row 85: 17: -0.0444322 18: -0.0442896 32: 0.0887218 85: 0.0362034 87: -0.0110724 90: -0.011108
Row 86: 16: 0.0949597 17: -0.0790554 31: -0.100444 32: 0.0845401 82: -0.0138418 84: -0.00989814 86: 0.0726619 87: -0.0112693 120: -0.0098657
Row 87: 17: -0.117194 18: 0.100381 31: 0.106179 32: -0.0893669 85: -0.0110724 86: -0.0112693 87: 0.0726139 90: -0.0140229 120: -0.0152755
Row 88: 18: -0.015565 19: -0.0538873 20: 0.0694523 88: 0.0393411 89: -0.0134718 91: -0.00389124
Row 89: 18: -0.16959 19: 0.141799 20: -0.100166 32: 0.127957 88: -0.0134718 89: 0.077513 90: -0.0115697 91: -0.021978 93: -0.0204196
Row 90: 17: 0.100524 18: -0.0808224 20: 0.0710095 32: -0.090711 85: -0.011108 87: -0.0140229 89: -0.0115697 90: 0.0743753 93: -0.00618266
Row 91: 4: 0.0871914 18: 0.103477 19: -0.118001 20: -0.0726677 50: -0.0142757 51: -0.00752216 88: -0.00389124 89: -0.021978 91: 0.0761241
Row 92: 5: 0.10266 20: -0.0767684 21: -0.135435 34: 0.109543 53: -0.020888 54: -0.00477698 92: 0.0750955 94: -0.0129707 97: -0.0144151
Row 93: 18: 0.106409 20: -0.0829105 32: -0.139279 34: 0.11578 89: -0.0204196 90: -0.00618266 93: 0.0748758 94: -0.0144002 122: -0.014545
Row 94: 20: -0.0671198 21: 0.0879677 32: 0.0886357 34: -0.109484 92: -0.0129707 93: -0.0144002 94: 0.0731109 97: -0.0090212 122: -0.00775875
Row 95: 6: 0.0969894 21: -0.0896637 22: -0.107352 33: 0.100026 56: -0.0158801 57: -0.00836729 95: 0.0728744 96: -0.010958 100: -0.0140486
Row 96: 21: -0.0733244 22: 0.0886334 33: -0.096241 34: 0.080932 95: -0.010958 96: 0.0732738 97: -0.0131023 100: -0.0112004 124: -0.00713071
Row 97: 20: 0.0937453 21: -0.10342 33: 0.119745 34: -0.11007 92: -0.0144151 94: -0.0090212 96: -0.0131023 97: 0.0734739 124: -0.0168339
Row 98: 7: 0.0962524 22: -0.0570951 23: -0.119279 24: 0.0801216 58: -0.0188123 59: -0.0052508 98: 0.0747355 99: -0.0110074 101: -0.00902298
Row 99: 22: -0.115471 23: 0.11087 24: -0.0850449 33: 0.0896463 98: -0.0110074 99: 0.0729558 100: -0.0102538 101: -0.01671 103: -0.0121577
Row 100: 21: 0.100996 22: -0.100017 24: 0.0962304 33: -0.0972098 95: -0.0140486 96: -0.0112004 99: -0.0102538 100: 0.0724223 103: -0.0138038
Row 101: 8: 0.106321 22: 0.102932 23: -0.159283 24: -0.0499701 61: -0.00346954 62: -0.0231108 98: -0.00902298 99: -0.01671 101: 0.076633
Row 102: 9: 0.0995372 24: -0.0948866 25: -0.130489 37: 0.125838 64: -0.0116848 65: -0.0131995 102: 0.0743812 104: -0.0209374 107: -0.0105222
Row 103: 22: 0.103846 24: -0.100845 33: -0.129815 37: 0.126814 99: -0.0121577 100: -0.0138038 103: 0.0743062 104: -0.020296 125: -0.0114075
Row 104: 24: -0.0527235 25: 0.110924 33: 0.106733 37: -0.164933 102: -0.0209374 103: -0.020296 104: 0.0763439 107: -0.00679354 125: -0.00638735
Row 105: 10: 0.102092 25: -0.110081 26: -0.0969936 35: 0.104983 67: -0.00859235 68: -0.0169306 105: 0.0732945 106: -0.0156561 109: -0.0105897
Row 106: 25: -0.110408 26: 0.103505 35: -0.118983 37: 0.125886 105: -0.0156561 106: 0.0739468 107: -0.0140897 109: -0.0102201 129: -0.0173819
Row 107: 24: 0.0692628 25: -0.0512114 35: 0.080396 37: -0.0984473 102: -0.0105222 104: -0.00679354 106: -0.0140897 107: 0.0757339 129: -0.00600932
Row 108: 12: 0.0757584 26: -0.0562238 27: -0.120983 35: 0.101448 72: -0.0186149 73: -0.00032471 108: 0.0777152 109: -0.0116308 111: -0.0137312
Row 109: 25: 0.0832393 26: -0.0841455 27: 0.0897882 35: -0.088882 105: -0.0105897 106: -0.0102201 108: -0.0116308 109: 0.0726442 111: -0.0108162
Row 110: 13: 0.084515 27: -0.133204 28: -0.0397802 35: 0.0884695 75: -0.00431704 76: -0.0168117 110: 0.0757811 111: -0.00562801 113: -0.0164894
Row 111: 26: 0.09819 27: -0.104977 28: 0.0842238 35: -0.077437 108: -0.0137312 109: -0.0108162 110: -0.00562801 111: 0.0737236 113: -0.0154279
Row 112: 14: 0.0970916 28: -0.0751098 29: -0.120582 36: 0.0986001 78: -0.0166108 79: -0.00766209 112: 0.0730651 114: -0.0135347 118: -0.0111154
Row 113: 27: 0.127669 28: -0.0901223 35: -0.147633 38: 0.110086 110: -0.0164894 111: -0.0154279 113: 0.0755677 115: -0.0204188 130: -0.00710264
Row 114: 28: -0.0805661 29: 0.100156 36: -0.1153 38: 0.0957097 112: -0.0135347 114: 0.0727019 115: -0.0152903 118: -0.0115045 131: -0.00863707
Row 115: 28: -0.0924837 35: 0.123679 36: 0.111641 38: -0.142836 113: -0.0204188 114: -0.0152903 115: 0.0745698 130: -0.0105009 131: -0.01262
Row 116: 15: 0.0938434 29: -0.0557497 30: -0.127349 31: 0.0892549 80: -0.0177782 81: -0.00568268 116: 0.0742186 117: -0.014059 119: -0.00825474
Row 117: 29: -0.0945602 30: 0.113237 31: -0.102008 36: 0.0833311 116: -0.014059 117: 0.073073 118: -0.0114429 119: -0.0142502 121: -0.00938986
Row 118: 28: 0.0904793 29: -0.108723 31: 0.108477 36: -0.0902331 112: -0.0111154 114: -0.0115045 117: -0.0114429 118: 0.0726635 121: -0.0156763
Row 119: 16: 0.0973645 29: 0.0900197 30: -0.128193 31: -0.059191 83: -0.00654301 84: -0.0177981 116: -0.00825474 117: -0.0142502 119: 0.0739519
Row 120: 17: 0.100565 31: -0.111729 32: -0.0877797 36: 0.0989443 86: -0.0098657 87: -0.0152755 120: 0.0725123 121: -0.0120792 123: -0.0126569
Row 121: 29: 0.100265 31: -0.108168 32: 0.0937796 36: -0.0858763 117: -0.00938986 118: -0.0156763 120: -0.0120792 121: 0.0726108 123: -0.0113657
Row 122: 20: 0.0892148 32: -0.0933717 34: -0.100779 36: 0.104936 93: -0.014545 94: -0.00775875 122: 0.0731559 123: -0.0106497 127: -0.0155842
Row 123: 31: 0.0960903 32: -0.0863352 34: 0.0834713 36: -0.0932263 120: -0.0126569 121: -0.0113657 122: -0.0106497 123: 0.0725538 127: -0.0102181
Row 124: 21: 0.0958583 33: -0.113287 34: -0.0852611 38: 0.10269 96: -0.00713071 97: -0.0168339 124: 0.0732984 126: -0.0141846 128: -0.0114879
Row 125: 24: 0.0711795 33: -0.0446607 37: -0.106982 38: 0.0804635 103: -0.0114075 104: -0.00638735 125: 0.0761401 126: -0.0153381 132: -0.00477781
Row 126: 33: -0.11397 34: 0.0989745 37: 0.133086 38: -0.118091 124: -0.0141846 125: -0.0153381 126: 0.0742808 128: -0.0105591 132: -0.0179334
Row 127: 32: 0.103209 34: -0.103379 36: -0.113503 38: 0.113673 122: -0.0155842 123: -0.0102181 127: 0.0731092 128: -0.0127917 131: -0.0156265
Row 128: 33: 0.0881878 34: -0.0751922 36: 0.0841228 38: -0.0971183 124: -0.0114879 126: -0.0105591 127: -0.0127917 128: 0.0728888 131: -0.00823901
Row 129: 25: 0.0935649 35: -0.0644794 37: -0.120086 38: 0.0910005 106: -0.0173819 107: -0.00600932 129: 0.0736918 130: -0.0126396 132: -0.0101105
Row 130: 28: 0.0704143 35: -0.0958469 37: 0.104402 38: -0.0789689 113: -0.00710264 115: -0.0105009 129: -0.0126396 130: 0.0742333 132: -0.0134608
Row 131: 28: 0.0850283 34: 0.0954622 36: -0.083436 38: -0.0970544 114: -0.00863707 115: -0.01262 127: -0.0156265 128: -0.00823901 131: 0.0732047
Row 132: 33: 0.0908447 35: 0.0942853 37: -0.125577 38: -0.0595534 125: -0.00477781 126: -0.0179334 129: -0.0101105 130: -0.0134608 132: 0.0742602
6. Solve the system:¶
[12]:
gfu.vec.data = \
a.mat.Inverse(freedofs=fes.FreeDofs()) * f.vec
Draw(gfu);
The Dirichlet boundary condition constrains some degrees of freedom. The argument fes.FreeDofs()
indicates that only the remaining "free" degrees of freedom should participate in the linear solve.
You can examine the coefficient vector of solution if needed:
[13]:
print(gfu.vec)
0
0
0
0.0923179
0
0
0
0
0
0
0
0
0.0578988
0.0863391
0.0954151
0.0945036
0.0888226
0.0780489
0.0595559
0.0331334
0.043177
0.0384731
0.0312766
0.0180508
0.0379191
0.0426386
0.0472136
0.0758445
0.0892927
0.0932644
0.0919339
0.0863
0.0722526
0.0576401
0.0666805
0.0710587
0.0846294
0.0618883
0.0766818
0
-0.00563337
0
0
0.0203536
0
-0.0350728
0.00280938
-0.00728756
-0.00137235
0
-0.00966674
-0.0121644
0
-0.0238901
-0.0131488
0
-0.0161892
-0.0200118
-0.00657505
-0.0212905
0
-0.0255408
-0.00925383
0
-0.0375247
-0.0131487
0
-0.0261275
-0.0183435
-0.0333457
-0.0247246
-0.0242762
-0.00473494
-0.0120835
-0.0145349
-0.00640155
-0.0108854
-0.00549118
-0.00937973
-0.00705122
-0.0052206
-0.00304656
-0.00758425
0.00107111
0.00110145
-0.00824163
0.000388213
0.00186718
-0.0082305
-0.000562953
0.00136394
0.00464277
-0.00573891
-0.0141064
-0.0092274
-0.00723695
-0.0140782
-0.012669
-0.0071093
-0.0248443
-0.00762662
-0.00336514
-0.00878309
-0.018877
-0.0045665
-0.00280081
-0.0126613
-0.0165067
-0.0151556
-0.0190153
-0.0164166
-0.00385688
-0.0106348
-0.0142227
-0.0122429
-0.00847428
-0.00104741
-0.00422534
-0.00710203
-0.00456872
-0.00792875
-0.00279066
-0.00418665
-0.00609652
-0.00917816
-0.0111537
-0.00714295
-0.00950903
-0.0114547
-0.00372816
-0.0141414
-0.00887479
-0.00923917
You can see the zeros coming from the zero boundary conditions.
Ways to interact with NGSolve¶
A jupyter notebook (like this one) gives you one way to interact with NGSolve. When you have a complex sequence of tasks to perform, the notebook may not be adequate.
You can write an entire python module in a text editor and call python on the command line. (A script of the above is provided in
poisson.py
.)python3 poisson.py
If you want the Netgen GUI, then use
netgen
on the command line:netgen poisson.py
You can then ask for a python shell from the GUI’s menu options (Solve -> Python shell
).