This page was generated from unit-7-optimization/05_Topological_Derivative_Transmission.ipynb.
7.7 PDE-Constrained Topology OptimizationΒΆ
We are again interested in minimizing a shape function of the type
subject to \(u:\mathsf{D} \to \mathbb{R}\) solves
where
\(\beta_\Omega = \beta_1\chi_\Omega + \beta_2 \chi_{\mathsf{D}\setminus \Omega}\), \(\qquad \beta_1,\beta_2>0\),
\(f_\Omega = f_1\chi_\Omega + f_2 \chi_{\mathsf{D}\setminus \Omega}\), \(\qquad f_1,f_2\in \mathbb{R}\),
\(u_d:\mathsf{D} \to \mathbb{R}\).
[1]:
from netgen.geom2d import SplineGeometry # SplieGeometry to define a 2D mesh
from ngsolve import * # import everything from the ngsolve module
from ngsolve.webgui import Draw
import numpy as np
from interpolations import InterpolateLevelSetToElems # function which interpolates a levelset function
myMAXH = 0.05
EPS = myMAXH * 1e-6 #variable defining when a point is on the interface and when not
The file interpolations.py can contains a routine to compute the volume ratio of each element with respect to a given level set function. The file can be downloaded from interpolations.py .
We begin with defining the domain \(\mathsf{D}\). For this we define a rectangular mesh with side length \(R\) using the NGSolve function SplineGeometry() with maximum triangle size maxh. The boundary name of \(\partial\mathsf{D}\) is "rectangle".
[2]:
geo = SplineGeometry()
R = 2
## add a rectangle
geo.AddRectangle(p1=(-R,-R),
p2=(R,R),
bc="rectangle",
leftdomain=1,
rightdomain=0)
geo.SetMaterial (1, "outer") # give the domain the name "outer"
mesh = Mesh(geo.GenerateMesh(maxh=myMAXH)) # generate ngsolve mesh
Draw(mesh)
[2]:
BaseWebGuiScene
fes_state,fes_adj - \(H^1\) conforming finite element space of order 1
pwc - \(L^2\) subspace of functions constant on each element of mesh
\(u,v\) are our trial and test functions
gfu, gfp are Gridfunctions storing the state and adjoint variable, respectively
gfud stores \(u_d\) - the target function
[3]:
# H1-conforming finite element space
fes_state = H1(mesh, order=1, dirichlet="rectangle")
fes_adj = H1(mesh, order=1, dirichlet="rectangle")
fes_level = H1(mesh, order=1)
pwc = L2(mesh) #piecewise constant space
## test and trial functions
u, v = fes_state.TnT()
p, q = fes_adj.TnT()
gfu = GridFunction(fes_state)
gfp = GridFunction(fes_adj)
gfud = GridFunction(fes_state)
We represent the design \(\Omega \subset \mathsf{D}\) by means of a level set function \(\psi: \mathsf{D} \rightarrow \mathbb R\) in the following way:
psi - gridfunction in fes_state defining \(\psi\)
psides - gridfunction describing the optimal shape
psinew - dummy function for line search
[4]:
psi = GridFunction(fes_level)
psi.Set(1)
psides = GridFunction(fes_level)
psinew = GridFunction(fes_level)
Next we solve the state equation \begin{equation} \int_{\mathsf{D}} \beta_\Omega \nabla u \cdot \nabla \varphi \;dx = \int_{\mathsf{D}} f_\Omega\varphi \;dx \quad \text{ for all } \varphi \in H^1_0(\mathsf{D}). \end{equation}
beta, f_rhs - piecewise constant gridfunction
B - bilinear form defining \(\int_{\mathsf{D}} \beta_\Omega\nabla \psi \cdot \nabla \varphi \;dx\)
B_adj - bilinear form defining \(\int_{\mathsf{D}} \beta_\Omega\nabla \psi \cdot \nabla \varphi \;dx\)
L - right hand side \(\int_{\mathsf{D}} f_\Omega \varphi \;dx\)
[5]:
# constants for f_rhs and beta
f1 = 10
f2 = 1
beta1 = 10
beta2 = 1
# piecewise constant coefficient functions beta and f_rhs
beta = GridFunction(pwc)
beta.Set(beta1)
f_rhs = GridFunction(pwc)
f_rhs.Set(f1)
# bilinear form for state equation
B = BilinearForm(fes_state)
B += beta*grad(u) * grad(v) * dx
B_adj = BilinearForm(fes_adj)
B_adj += beta*grad(p) * grad(q) * dx
L = LinearForm(fes_state)
L += f_rhs * v *dx
duCost = LinearForm(fes_adj)
# solving
psides.Set(1)
InterpolateLevelSetToElems(psides, beta1, beta2, beta, mesh, EPS)
InterpolateLevelSetToElems(psides, f1, f2, f_rhs, mesh, EPS)
B.Assemble()
L.Assemble()
inv = B.mat.Inverse(fes_state.FreeDofs(), inverse="sparsecholesky") # inverse of bilinear form
gfu.vec.data = inv*L.vec
scene_u = Draw(gfu)
As an optimal shape we define \(\Omega_{opt} := \{f<0\}\), where \(f\) is the function from the levelset example describing a clover shape. We construct \(u_d\) by solving
[6]:
a = 4.0/5.0
b = 2
f = CoefficientFunction( 0.1*( (sqrt((x - a)**2 + b * y**2) - 1) \
* (sqrt((x + a)**2 + b * y**2) - 1) \
* (sqrt(b * x**2 + (y - a)**2) - 1) \
* (sqrt(b * x**2 + (y + a)**2) - 1) - 0.001) )
psides.Set(f)
InterpolateLevelSetToElems(psides, beta1, beta2, beta, mesh, EPS)
InterpolateLevelSetToElems(psides, f1, f2, f_rhs, mesh, EPS)
B.Assemble()
L.Assemble()
inv = B.mat.Inverse(fes_state.FreeDofs(), inverse="sparsecholesky") # inverse of bilinear form
gfud.vec.data = inv*L.vec
Draw(gfud, mesh, 'gfud')
[6]:
BaseWebGuiScene
The function SolvePDE solves the state and adjoint state each time it is called. Note that since the functions beta and f_rhs are GridFunctions we do not have to re-define the bilinear form and linear form when beta and f_rhs change.
[7]:
def SolvePDE(adjoint=False):
#Newton(a, gfu, printing = False, maxerr = 3e-9)
B.Assemble()
L.Assemble()
inv_state = B.mat.Inverse(fes_state.FreeDofs(), inverse="sparsecholesky")
# solve state equation
gfu.vec.data = inv_state*L.vec
if adjoint == True:
# solve adjoint state equatoin
duCost.Assemble()
B_adj.Assemble()
inv_adj = B_adj.mat.Inverse(fes_adj.FreeDofs(), inverse="sparsecholesky")
gfp.vec.data = -inv_adj * duCost.vec
scene_u.Redraw()
InterpolateLevelSetToElems(psi, beta1, beta2, beta, mesh, EPS)
InterpolateLevelSetToElems(psi, f1, f2, f_rhs, mesh, EPS)
SolvePDE()
# define the cost function
def Cost(u):
return (u - gfud)**2*dx
# derivative of cost function
duCost += 2*(gfu-gfud) * q * dx
print("initial cost = ", Integrate(Cost(gfu), mesh))
initial cost = 39.29567644495092
It remains to implement the topological derivative: In define \(NegPos\) and \(PosNeg\) as the topological derivative in \(\Omega\) respectively \(D \setminus \overline{\Omega}\):
and the update function (also called generalised topological derivative)
[8]:
BetaPosNeg = 2 * beta2 * (beta1-beta2)/(beta1+beta2) # factors in TD in positive part {x: \psi(x)>0} ={x: \beta(x) = \beta_2}
BetaNegPos = 2 * beta1 * (beta1-beta2)/(beta1+beta2) # factors in TD in positive part {x: \psi(x)>0} ={x: \beta(x) = \beta_2}
FPosNeg = -(f1-f2)
psinew.vec.data = psi.vec
## normalise psi in L2
normPsi = sqrt(Integrate(psi**2*dx, mesh))
psi.vec.data = 1/normPsi * psi.vec
kappa = 0.05
# set level set function to data
InterpolateLevelSetToElems(psi, beta1, beta2, beta, mesh, EPS)
InterpolateLevelSetToElems(psi, f1, f2, f_rhs, mesh, EPS)
Redraw()
TD_node = GridFunction(fes_level)
#scene1 = Draw(TD_node, mesh, "TD_node")
TD_pwc = GridFunction(pwc)
#scene2 = Draw(TD_pwc, mesh, "TD_pwc")
TDPosNeg_pwc = GridFunction(pwc)
TDNegPos_pwc = GridFunction(pwc)
cutRatio = GridFunction(pwc)
# solve for current configuration
SolvePDE(adjoint=True)
- Finally we can define a loop defining the levelset update: :nbsphinx-math:`begin{align*}
psi_{k+1} = (1-s_k) frac{psi_k}{|\psi_k|} + s_k frac{g_{psi_k}}{|g_{\psi_k}|}
end{align*}`
[9]:
scene = Draw(psi)
scene_cr = Draw(cutRatio, mesh, "cutRatio")
[10]:
iter_max = 20
converged = False
xm=0.
ym=0.
psi.Set( (x-xm)**2+(y-ym)**2-0.25**2)
psinew.vec.data= psi.vec
scene.Redraw()
J = Integrate(Cost(gfu),mesh)
with TaskManager():
for k in range(iter_max):
print("================ iteration ", k, "===================")
# copy new levelset data from psinew into psi
psi.vec.data = psinew.vec
scene.Redraw()
SolvePDE(adjoint=True)
J_current = Integrate(Cost(gfu),mesh)
print( Integrate( (gfu-gfud)**2*dx, mesh) )
print("cost in beginning of iteration", k, ": Cost = ", J_current)
# compute the piecewise constant topological derivative in each domain
TDPosNeg_pwc.Set( BetaPosNeg * grad(gfu) * grad(gfp) + FPosNeg*gfp )
TDNegPos_pwc.Set( BetaNegPos * grad(gfu) * grad(gfp) + FPosNeg*gfp )
# compute the cut ratio of the interface elements
InterpolateLevelSetToElems(psi, 1, 0, cutRatio, mesh, EPS)
scene_cr.Redraw()
# compute the combined topological derivative using the cut ratio information
for j in range(len(TD_pwc.vec)):
TD_pwc.vec[j] = cutRatio.vec[j] * TDNegPos_pwc.vec[j] + (1-cutRatio.vec[j])*TDPosNeg_pwc.vec[j]
TD_node.Set(TD_pwc)
normTD = sqrt(Integrate(TD_node**2*dx, mesh)) # L2 norm of TD_node
TD_node.vec.data = 1/normTD * TD_node.vec # normalised TD_node
normPsi = sqrt(Integrate(psi**2*dx, mesh)) # L2 norm of psi
psi.vec.data = 1/normPsi * psi.vec # normalised psi
linesearch = True
for j in range(10):
# update the level set function
psinew.vec.data = (1-kappa)*psi.vec + kappa*TD_node.vec
# update beta and f_rhs
InterpolateLevelSetToElems(psinew, beta1, beta2, beta, mesh, EPS)
InterpolateLevelSetToElems(psinew, f1, f2, f_rhs, mesh, EPS)
# solve PDE without adjoint
SolvePDE()
Redraw(blocking=True)
Jnew = Integrate(Cost(gfu), mesh)
if Jnew > J_current:
print("--------------------")
print("-----line search ---")
print("--------------------")
kappa = kappa*0.8
print("kappa", kappa)
else:
break
Redraw(blocking=True)
print("----------- Jnew in iteration ", k, " = ", Jnew, " (kappa = ", kappa, ")")
print('')
print("iter" + str(k) + ", Jnew = " + str(Jnew) + " (kappa = ", kappa, ")")
kappa = min(1, kappa*1.2)
print("end of iter " + str(k))
================ iteration 0 ===================
39.29567644495098
cost in beginning of iteration 0 : Cost = 39.29567644495097
----------- Jnew in iteration 0 = 11.859500825448073 (kappa = 0.05 )
iter0, Jnew = 11.859500825448073 (kappa = 0.05 )
end of iter 0
================ iteration 1 ===================
11.85950082544812
cost in beginning of iteration 1 : Cost = 11.85950082544812
----------- Jnew in iteration 1 = 6.366217031113667 (kappa = 0.06 )
iter1, Jnew = 6.366217031113667 (kappa = 0.06 )
end of iter 1
================ iteration 2 ===================
6.366217031113707
cost in beginning of iteration 2 : Cost = 6.366217031113706
----------- Jnew in iteration 2 = 6.21940400233122 (kappa = 0.072 )
iter2, Jnew = 6.21940400233122 (kappa = 0.072 )
end of iter 2
================ iteration 3 ===================
6.219404002331068
cost in beginning of iteration 3 : Cost = 6.219404002331068
--------------------
-----line search ---
--------------------
kappa 0.06912
--------------------
-----line search ---
--------------------
kappa 0.055296000000000005
--------------------
-----line search ---
--------------------
kappa 0.04423680000000001
--------------------
-----line search ---
--------------------
kappa 0.03538944000000001
--------------------
-----line search ---
--------------------
kappa 0.028311552000000007
--------------------
-----line search ---
--------------------
kappa 0.02264924160000001
--------------------
-----line search ---
--------------------
kappa 0.018119393280000007
--------------------
-----line search ---
--------------------
kappa 0.014495514624000005
----------- Jnew in iteration 3 = 5.650460303043839 (kappa = 0.014495514624000005 )
iter3, Jnew = 5.650460303043839 (kappa = 0.014495514624000005 )
end of iter 3
================ iteration 4 ===================
5.650460303043813
cost in beginning of iteration 4 : Cost = 5.650460303043813
--------------------
-----line search ---
--------------------
kappa 0.013915694039040007
----------- Jnew in iteration 4 = 5.538240999805869 (kappa = 0.013915694039040007 )
iter4, Jnew = 5.538240999805869 (kappa = 0.013915694039040007 )
end of iter 4
================ iteration 5 ===================
5.53824099980605
cost in beginning of iteration 5 : Cost = 5.5382409998060504
--------------------
-----line search ---
--------------------
kappa 0.013359066277478408
--------------------
-----line search ---
--------------------
kappa 0.010687253021982727
--------------------
-----line search ---
--------------------
kappa 0.008549802417586181
--------------------
-----line search ---
--------------------
kappa 0.006839841934068946
----------- Jnew in iteration 5 = 5.477093516466133 (kappa = 0.006839841934068946 )
iter5, Jnew = 5.477093516466133 (kappa = 0.006839841934068946 )
end of iter 5
================ iteration 6 ===================
5.477093516466141
cost in beginning of iteration 6 : Cost = 5.477093516466141
--------------------
-----line search ---
--------------------
kappa 0.006566248256706188
----------- Jnew in iteration 6 = 5.085963722545592 (kappa = 0.006566248256706188 )
iter6, Jnew = 5.085963722545592 (kappa = 0.006566248256706188 )
end of iter 6
================ iteration 7 ===================
5.085963722545849
cost in beginning of iteration 7 : Cost = 5.08596372254585
--------------------
-----line search ---
--------------------
kappa 0.00630359832643794
--------------------
-----line search ---
--------------------
kappa 0.005042878661150352
--------------------
-----line search ---
--------------------
kappa 0.004034302928920282
----------- Jnew in iteration 7 = 5.02467636941681 (kappa = 0.004034302928920282 )
iter7, Jnew = 5.02467636941681 (kappa = 0.004034302928920282 )
end of iter 7
================ iteration 8 ===================
5.024676369416801
cost in beginning of iteration 8 : Cost = 5.0246763694168015
--------------------
-----line search ---
--------------------
kappa 0.003872930811763471
----------- Jnew in iteration 8 = 4.6801640029264435 (kappa = 0.003872930811763471 )
iter8, Jnew = 4.6801640029264435 (kappa = 0.003872930811763471 )
end of iter 8
================ iteration 9 ===================
4.680164002926359
cost in beginning of iteration 9 : Cost = 4.68016400292636
--------------------
-----line search ---
--------------------
kappa 0.003718013579292932
--------------------
-----line search ---
--------------------
kappa 0.0029744108634343455
--------------------
-----line search ---
--------------------
kappa 0.0023795286907474767
--------------------
-----line search ---
--------------------
kappa 0.0019036229525979814
----------- Jnew in iteration 9 = 4.5480133075038545 (kappa = 0.0019036229525979814 )
iter9, Jnew = 4.5480133075038545 (kappa = 0.0019036229525979814 )
end of iter 9
================ iteration 10 ===================
4.548013307503865
cost in beginning of iteration 10 : Cost = 4.548013307503865
----------- Jnew in iteration 10 = 4.297138500839136 (kappa = 0.0022843475431175778 )
iter10, Jnew = 4.297138500839136 (kappa = 0.0022843475431175778 )
end of iter 10
================ iteration 11 ===================
4.297138500839056
cost in beginning of iteration 11 : Cost = 4.297138500839056
--------------------
-----line search ---
--------------------
kappa 0.002192973641392875
--------------------
-----line search ---
--------------------
kappa 0.0017543789131143001
--------------------
-----line search ---
--------------------
kappa 0.00140350313049144
----------- Jnew in iteration 11 = 4.240506681970923 (kappa = 0.00140350313049144 )
iter11, Jnew = 4.240506681970923 (kappa = 0.00140350313049144 )
end of iter 11
================ iteration 12 ===================
4.240506681970901
cost in beginning of iteration 12 : Cost = 4.240506681970901
----------- Jnew in iteration 12 = 4.1161408357052105 (kappa = 0.0016842037565897282 )
iter12, Jnew = 4.1161408357052105 (kappa = 0.0016842037565897282 )
end of iter 12
================ iteration 13 ===================
4.116140835705155
cost in beginning of iteration 13 : Cost = 4.116140835705155
----------- Jnew in iteration 13 = 4.105202561882253 (kappa = 0.002021044507907674 )
iter13, Jnew = 4.105202561882253 (kappa = 0.002021044507907674 )
end of iter 13
================ iteration 14 ===================
4.105202561882266
cost in beginning of iteration 14 : Cost = 4.105202561882267
----------- Jnew in iteration 14 = 4.030283152743654 (kappa = 0.0024252534094892086 )
iter14, Jnew = 4.030283152743654 (kappa = 0.0024252534094892086 )
end of iter 14
================ iteration 15 ===================
4.030283152743667
cost in beginning of iteration 15 : Cost = 4.030283152743667
--------------------
-----line search ---
--------------------
kappa 0.00232824327310964
--------------------
-----line search ---
--------------------
kappa 0.0018625946184877122
----------- Jnew in iteration 15 = 4.013358364167156 (kappa = 0.0018625946184877122 )
iter15, Jnew = 4.013358364167156 (kappa = 0.0018625946184877122 )
end of iter 15
================ iteration 16 ===================
4.013358364167156
cost in beginning of iteration 16 : Cost = 4.013358364167157
----------- Jnew in iteration 16 = 3.8845675205242785 (kappa = 0.0022351135421852545 )
iter16, Jnew = 3.8845675205242785 (kappa = 0.0022351135421852545 )
end of iter 16
================ iteration 17 ===================
3.884567520524319
cost in beginning of iteration 17 : Cost = 3.8845675205243193
--------------------
-----line search ---
--------------------
kappa 0.0021457090004978444
--------------------
-----line search ---
--------------------
kappa 0.0017165672003982757
----------- Jnew in iteration 17 = 3.8369927695913337 (kappa = 0.0017165672003982757 )
iter17, Jnew = 3.8369927695913337 (kappa = 0.0017165672003982757 )
end of iter 17
================ iteration 18 ===================
3.8369927695913484
cost in beginning of iteration 18 : Cost = 3.836992769591349
----------- Jnew in iteration 18 = 3.736383183807911 (kappa = 0.0020598806404779307 )
iter18, Jnew = 3.736383183807911 (kappa = 0.0020598806404779307 )
end of iter 18
================ iteration 19 ===================
3.7363831838078747
cost in beginning of iteration 19 : Cost = 3.7363831838078747
--------------------
-----line search ---
--------------------
kappa 0.0019774854148588133
----------- Jnew in iteration 19 = 3.718139214665866 (kappa = 0.0019774854148588133 )
iter19, Jnew = 3.718139214665866 (kappa = 0.0019774854148588133 )
end of iter 19
After 999 iterations: $J = $
[ ]: