This page was generated from unit-11.2-bem-Laplace/Laplace_NtD_direct.ipynb.

11.2.4. Neumann Laplace Direct Method

keys: homogeneous Neumann bvp, hypersingular operator, unknown Dirichlet data

[1]:
from netgen.occ import *
from ngsolve import *
from ngsolve.webgui import Draw
from ngsolve.bem import *
from ngsolve.solvers import CG

Consider the Neumann boundary value problem

\[\begin{split}\left\{ \begin{array}{rlc l} \Delta u &=& 0, \quad &\Omega \subset \mathbb R^3\,,\\ \gamma_1 u&=& u_1, \quad &\Gamma = \partial \Omega\,.\end{array} \right.\end{split}\]

The unique solution \(u\in H^1(\Omega)\) can be written in the following form (representation forumula)

\[u(x) = \underbrace{ \int\limits_\Gamma \displaystyle{\frac{1}{4\,\pi}\, \frac{1}{\| x-y\|} } \, u_1(y)\, \mathrm{d}\sigma_y}_{\displaystyle{ \mathrm{SL}(u_1) }} + \underbrace{ \int\limits_\Gamma \displaystyle{\frac{1}{4\,\pi}\, \frac{\langle n(y), x-y \rangle}{\| x-y\|^3} } \, u_1( y)\, \mathrm{d}\sigma_y}_{\displaystyle{ \mathrm{DL}(u_1) }}\,.\]

Let’s carefully apply the Neumann trace \(\gamma_1\) to the representation formula and solve the resulting boundary integral equation for the Dirichlet trace \(u_0\) of \(u\) by discretisation of the following variational formulation:

\[\forall \, v\in H^{\frac12}(\Gamma): \left\langle v, \gamma_1 \left(\mathrm{DL}(u_0)\right) \right\rangle_{-\frac12} = \left\langle u_1, v\right\rangle_{-\frac12} - \left\langle v, \gamma_1 \left(\mathrm{SL}(u_1)\right) \right\rangle_{-\frac12}\,.\]

Define the geometry \(\Omega \subset \mathbb R^3\) and create a mesh:

[2]:
sp = Glue(Sphere( (0,0,0), 1).faces)
mesh = Mesh( OCCGeometry(sp).GenerateMesh(maxh=0.2)).Curve(2)

Define conforming finite element spaces for \(H^{\frac12}(\Gamma)\) and \(H^{-\frac12}(\Gamma)\) respectively:

[3]:
fesL2 = SurfaceL2(mesh, order=2, dual_mapping=False)
u,v = fesL2.TnT()
fesH1 = H1(mesh, order=2, definedon=mesh.Boundaries(".*"))
uH1,vH1 = fesH1.TnT()
print ("ndofL2 = ", fesL2.ndof, "ndof H1 = ", fesH1.ndof)
ndofL2 =  4332 ndof H1 =  1446

Project the given Neumann data \(u_1\) in finite element space and have a look at the boundary data:

[4]:
uexa = 1/ sqrt( (x-1)**2 + (y-1)**2 + (z-1)**2 )

graduexa = CF( (uexa.Diff(x), uexa.Diff(y), uexa.Diff(z)) )
n = specialcf.normal(3)
u1 = GridFunction(fesL2)
u1.Interpolate(graduexa*n, definedon=mesh.Boundaries(".*"))

Draw (u1, mesh, draw_vol=False, order=3);

The discretisation of the variational formulation leads to a system of linear equations, ie

\[\left( \mathrm{D} + \mathrm{S}\right) \, \mathrm{u}_0 = \left( \frac12 \,\mathrm{M} - \mathrm{K}' \right) \, \mathrm{u}_1\,,\]

where the linear operators are as follows

  • \(\mathrm{D}\) is the hypersingular operator and the stabilisation \((\mathrm D + \mathrm{S})\) is regular and symmetric.

  • \(\mathrm{M}\) is a mass matrix.

  • \(\mathrm{K}'\) is the adjoint double layer operator.

The stabilisation matrix \(S\) is needed to cope with the kernel of the hypersingular operator. The following stabilisation matrix is used here:

\[S \in \mathbb R^{n\times n}, \quad S_{ij} = \int\limits_{\Gamma} v_i(x) \,\mathrm{d} \sigma \cdot \int\limits_{\Gamma} v_j(x) \,\mathrm{d} \sigma\,,\]

where \(v_i, v_j\) being \(H^{\frac12}(\Gamma)\)-conforming shape functions.

[5]:
vH1m1 = LinearForm(vH1*1*ds(bonus_intorder=3)).Assemble()
S = (BaseMatrix(Matrix(vH1m1.vec.Reshape(1))))@(BaseMatrix(Matrix(vH1m1.vec.Reshape(fesH1.ndof))))

Now we assemble the stabilised system matrix and the right hand side and solve for the Dirichlet data \(u_0\) with an iterative solver:

[6]:
u0 = GridFunction(fesH1)
pre = BilinearForm(uH1*vH1*ds).Assemble().mat.Inverse(freedofs=fesH1.FreeDofs())
with TaskManager():
    D = HypersingularOperator(fesH1, intorder=12)

    M = BilinearForm( v.Trace() * uH1 * ds(bonus_intorder=3)).Assemble()
    Kt = DoubleLayerPotentialOperator(fesL2, fesH1, intorder=12)
    rhs = ( (0.5 * M.mat.T - Kt.mat) * u1.vec ).Evaluate()

    CG(mat=D.mat+S, pre=pre, rhs=rhs, sol=u0.vec, tol=1e-8, maxsteps=200, printrates=True)
CG iteration 1, residual = 0.6734144317722746
CG iteration 2, residual = 0.3570539379631509
CG iteration 3, residual = 0.20848860723469478
CG iteration 4, residual = 0.1631266323529725
CG iteration 5, residual = 0.12857379570786429
CG iteration 6, residual = 0.09481253225856273
CG iteration 7, residual = 0.06093958336185555
CG iteration 8, residual = 0.048206460227885085
CG iteration 9, residual = 0.029786740753300896
CG iteration 10, residual = 0.02121130186173815
CG iteration 11, residual = 0.013534492764568841
CG iteration 12, residual = 0.008289487289800123
CG iteration 13, residual = 0.00544396620405278
CG iteration 14, residual = 0.003211926433963955
CG iteration 15, residual = 0.002038548587051734
CG iteration 16, residual = 0.0011894769268718888
CG iteration 17, residual = 0.000684887042378143
CG iteration 18, residual = 0.00040443301647251475
CG iteration 19, residual = 0.0002207343704001456
CG iteration 20, residual = 0.00012681943939425256
CG iteration 21, residual = 6.907297630439527e-05
CG iteration 22, residual = 3.7360197785261355e-05
CG iteration 23, residual = 1.9761100613947857e-05
CG iteration 24, residual = 9.964135459248383e-06
CG iteration 25, residual = 4.933925382110492e-06
CG iteration 26, residual = 2.478719994527705e-06
CG iteration 27, residual = 1.1900548678634647e-06
CG iteration 28, residual = 5.710376754479573e-07
CG iteration 29, residual = 2.6226609001203304e-07
CG iteration 30, residual = 1.2089336246281426e-07
CG iteration 31, residual = 5.487435963964219e-08
CG iteration 32, residual = 2.724777519183583e-08
CG iteration 33, residual = 1.8187034534852102e-08
CG iteration 34, residual = 1.8156577764584884e-08
CG iteration 35, residual = 2.095069176305795e-08
CG iteration 36, residual = 1.581734103802092e-08
CG iteration 37, residual = 7.829369740713928e-09
CG iteration 38, residual = 3.4516469724116096e-09

Let’s have a look at the numerical and exact Dirichlet data and compare them quantitatively:

[7]:
Draw (u0, mesh, draw_vol=False, order=3);
u0exa = GridFunction(fesH1)
u0exa.Interpolate (uexa, definedon=mesh.Boundaries(".*"))
Draw (u0exa, mesh, draw_vol=False, order=3);
[8]:
print ("L2 error of surface gradients =", sqrt (Integrate ( (grad(u0exa)-grad(u0))**2, mesh, BND)))
L2 error of surface gradients = 0.004449847811294778
[ ]:

[ ]: