This page was generated from unit-11.2-bem-Laplace/Laplace_NtD_direct.ipynb.
11.2.4. Neumann Laplace Direct Method¶
keys: homogeneous Neumann bvp, hypersingular operator, unknown Dirichlet data
[1]:
from netgen.occ import *
from ngsolve import *
from ngsolve.webgui import Draw
from ngsolve.bem import *
from ngsolve.solvers import CG
Consider the Neumann boundary value problem
The unique solution \(u\in H^1(\Omega)\) can be written in the following form (representation forumula)
Let’s carefully apply the Neumann trace \(\gamma_1\) to the representation formula and solve the resulting boundary integral equation for the Dirichlet trace \(u_0\) of \(u\) by discretisation of the following variational formulation:
Define the geometry \(\Omega \subset \mathbb R^3\) and create a mesh:
[2]:
sp = Glue(Sphere( (0,0,0), 1).faces)
mesh = Mesh( OCCGeometry(sp).GenerateMesh(maxh=0.2)).Curve(2)
Define conforming finite element spaces for \(H^{\frac12}(\Gamma)\) and \(H^{-\frac12}(\Gamma)\) respectively:
[3]:
fesL2 = SurfaceL2(mesh, order=2, dual_mapping=False)
u,v = fesL2.TnT()
fesH1 = H1(mesh, order=2, definedon=mesh.Boundaries(".*"))
uH1,vH1 = fesH1.TnT()
print ("ndofL2 = ", fesL2.ndof, "ndof H1 = ", fesH1.ndof)
ndofL2 = 4332 ndof H1 = 1446
Project the given Neumann data \(u_1\) in finite element space and have a look at the boundary data:
[4]:
uexa = 1/ sqrt( (x-1)**2 + (y-1)**2 + (z-1)**2 )
graduexa = CF( (uexa.Diff(x), uexa.Diff(y), uexa.Diff(z)) )
n = specialcf.normal(3)
u1 = GridFunction(fesL2)
u1.Interpolate(graduexa*n, definedon=mesh.Boundaries(".*"))
Draw (u1, mesh, draw_vol=False, order=3);
The discretisation of the variational formulation leads to a system of linear equations, ie
where the linear operators are as follows
\(\mathrm{D}\) is the hypersingular operator and the stabilisation \((\mathrm D + \mathrm{S})\) is regular and symmetric.
\(\mathrm{M}\) is a mass matrix.
\(\mathrm{K}'\) is the adjoint double layer operator.
The stabilisation matrix \(S\) is needed to cope with the kernel of the hypersingular operator. The following stabilisation matrix is used here:
where \(v_i, v_j\) being \(H^{\frac12}(\Gamma)\)-conforming shape functions.
[5]:
vH1m1 = LinearForm(vH1*1*ds(bonus_intorder=3)).Assemble()
S = (BaseMatrix(Matrix(vH1m1.vec.Reshape(1))))@(BaseMatrix(Matrix(vH1m1.vec.Reshape(fesH1.ndof))))
Now we assemble the stabilised system matrix and the right hand side and solve for the Dirichlet data \(u_0\) with an iterative solver:
[6]:
u0 = GridFunction(fesH1)
pre = BilinearForm(uH1*vH1*ds).Assemble().mat.Inverse(freedofs=fesH1.FreeDofs())
with TaskManager():
D = HypersingularOperator(fesH1, intorder=12)
M = BilinearForm( v.Trace() * uH1 * ds(bonus_intorder=3)).Assemble()
Kt = DoubleLayerPotentialOperator(fesL2, fesH1, intorder=12)
rhs = ( (0.5 * M.mat.T - Kt.mat) * u1.vec ).Evaluate()
CG(mat=D.mat+S, pre=pre, rhs=rhs, sol=u0.vec, tol=1e-8, maxsteps=200, printrates=True)
CG iteration 1, residual = 0.6734144317722746
CG iteration 2, residual = 0.3570539379523584
CG iteration 3, residual = 0.2084886072251594
CG iteration 4, residual = 0.16312663219143092
CG iteration 5, residual = 0.12857379575539626
CG iteration 6, residual = 0.09481253218479432
CG iteration 7, residual = 0.060939583293284555
CG iteration 8, residual = 0.04820646021250002
CG iteration 9, residual = 0.02978674071217719
CG iteration 10, residual = 0.021211301857303893
CG iteration 11, residual = 0.013534492769772156
CG iteration 12, residual = 0.008289487261873726
CG iteration 13, residual = 0.0054439661887016174
CG iteration 14, residual = 0.0032119264262756367
CG iteration 15, residual = 0.0020385485830049636
CG iteration 16, residual = 0.0011894769220959969
CG iteration 17, residual = 0.0006848870433746956
CG iteration 18, residual = 0.00040443301406008664
CG iteration 19, residual = 0.0002207343685184516
CG iteration 20, residual = 0.00012681943819308413
CG iteration 21, residual = 6.907297599154184e-05
CG iteration 22, residual = 3.736019764510463e-05
CG iteration 23, residual = 1.9761100557874147e-05
CG iteration 24, residual = 9.964135469276926e-06
CG iteration 25, residual = 4.9339253872716335e-06
CG iteration 26, residual = 2.478719966857449e-06
CG iteration 27, residual = 1.1900548712780764e-06
CG iteration 28, residual = 5.710376983671353e-07
CG iteration 29, residual = 2.622661495472311e-07
CG iteration 30, residual = 1.2089348611253162e-07
CG iteration 31, residual = 5.4874600490435344e-08
CG iteration 32, residual = 2.724822747981562e-08
CG iteration 33, residual = 1.818781826835393e-08
CG iteration 34, residual = 1.8157784456151624e-08
CG iteration 35, residual = 2.0951868586865976e-08
CG iteration 36, residual = 1.5817717347165412e-08
CG iteration 37, residual = 7.829425924856579e-09
CG iteration 38, residual = 3.4516503033487773e-09
Let’s have a look at the numerical and exact Dirichlet data and compare them quantitatively:
[7]:
Draw (u0, mesh, draw_vol=False, order=3);
u0exa = GridFunction(fesH1)
u0exa.Interpolate (uexa, definedon=mesh.Boundaries(".*"))
Draw (u0exa, mesh, draw_vol=False, order=3);
[8]:
print ("L2 error of surface gradients =", sqrt (Integrate ( (grad(u0exa)-grad(u0))**2, mesh, BND)))
L2 error of surface gradients = 0.004449847820701259
[ ]:
[ ]: