This page was generated from unit-2.4-Maxwell/Maxwell.ipynb.
2.4 Maxwell’s Equations¶
[Peter Monk: “Finite Elements for Maxwell’s Equations”]
Magnetostatic field generated by a permanent magnet¶
magnetic flux \(B\), magnetic field \(H\), given magnetization \(M\):
Introducing a vector-potential \(A\) such that \(B = \Curl A\), and putting equations together we get
In weak form: Find \(A \in H(\Curl)\) such that
Usually, the permeability \(\mu\) is given as \(\mu = \mu_r \mu_0\), with \(\mu_0 = 4 \pi 10^{-7}\) the permeability of vacuum.
[1]:
from ngsolve import *
from netgen.csg import *
import netgen.gui
Geometric model and meshing of a bar magnet:
[2]:
box = OrthoBrick(Pnt(-3,-3,-3),Pnt(3,3,3)).bc("outer")
magnet = Cylinder(Pnt(-1,0,0),Pnt(1,0,0), 0.3) * OrthoBrick(Pnt(-1,-3,-3),Pnt(1,3,3))
air = box - magnet
geo = CSGeometry()
geo.Add (air.mat("air"), transparent=True)
geo.Add (magnet.mat("magnet").maxh(1), col=(0.3,0.3,0.1))
geo.Draw()
mesh = Mesh(geo.GenerateMesh(maxh=2, curvaturesafety=1))
mesh.Curve(3)
[3]:
mesh.GetMaterials(), mesh.GetBoundaries()
[3]:
(('air', 'magnet'),
('outer',
'outer',
'outer',
'outer',
'outer',
'outer',
'default',
'default',
'default'))
Define space, forms and preconditioner.
To obtain a regular system matrix, we regularize by adding a very small \(L_2\) term.
We solve magnetostatics, so we can gauge by adding and arbitrary gradient field. A cheap possibility is to delete all basis-functions which are gradients (flag ‘nograds’)
[4]:
fes = HCurl(mesh, order=3, dirichlet="outer", nograds=True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()
from math import pi
mu0 = 4*pi*1e-7
mur = CoefficientFunction( [1000 if mat== "magnet" else 1
for mat in mesh.GetMaterials()])
a = BilinearForm(fes)
a += 1/(mu0*mur)*curl(u)*curl(v)*dx + 1e-8/(mu0*mur)*u*v*dx
c = Preconditioner(a, "bddc")
f = LinearForm(fes)
mag = CoefficientFunction((1,0,0)) * \
CoefficientFunction( [1 if mat == "magnet" else 0 for mat in mesh.GetMaterials()])
f += SymbolicLFI(mag*curl(v), definedon=mesh.Materials("magnet"))
ndof = 21439
Assemble system and setup preconditioner using task-parallelization:
[5]:
with TaskManager():
a.Assemble()
f.Assemble()
Finally, declare GridFunction and solve by preconditioned CG iteration:
[6]:
gfu = GridFunction(fes)
with TaskManager():
solvers.CG(sol=gfu.vec, rhs=f.vec, mat=a.mat, pre=c.mat)
it = 0 err = 0.004840564319042956
it = 1 err = 0.002877746735453422
it = 2 err = 0.0018540826001404458
it = 3 err = 0.001201924591628051
it = 4 err = 0.0008069147490216403
it = 5 err = 0.0005450296846235297
it = 6 err = 0.0003675266044562467
it = 7 err = 0.0002434589451927929
it = 8 err = 0.0001435746661404234
it = 9 err = 9.620650815911942e-05
it = 10 err = 5.87331405801642e-05
it = 11 err = 3.586599439923349e-05
it = 12 err = 2.236083879867455e-05
it = 13 err = 1.3049751993777967e-05
it = 14 err = 8.43490296134633e-06
it = 15 err = 5.399805488388646e-06
it = 16 err = 3.0315968419612513e-06
it = 17 err = 1.826457133757794e-06
it = 18 err = 1.14341432597726e-06
it = 19 err = 7.016189041097574e-07
it = 20 err = 4.542643111994101e-07
it = 21 err = 2.6888162144515167e-07
it = 22 err = 1.5855127448291939e-07
it = 23 err = 9.730336619012949e-08
it = 24 err = 5.622498588543311e-08
it = 25 err = 3.3753841921969977e-08
it = 26 err = 2.050695590605847e-08
it = 27 err = 1.2573120984768046e-08
it = 28 err = 7.310342124602579e-09
it = 29 err = 4.290376411824819e-09
it = 30 err = 2.469419254593805e-09
it = 31 err = 1.4316972534344513e-09
it = 32 err = 8.77605482241475e-10
it = 33 err = 5.202538144553532e-10
it = 34 err = 3.177532555089666e-10
it = 35 err = 1.888099034497334e-10
it = 36 err = 1.110042908511075e-10
it = 37 err = 6.568461994601609e-11
it = 38 err = 3.867488752153068e-11
it = 39 err = 2.288029494354035e-11
it = 40 err = 1.3787282352059778e-11
it = 41 err = 8.551870860782309e-12
it = 42 err = 4.9089432018070234e-12
it = 43 err = 2.891176286251989e-12
it = 44 err = 1.7320555921750252e-12
it = 45 err = 1.0439723245773804e-12
it = 46 err = 6.985971343990278e-13
it = 47 err = 4.5870462328153e-13
it = 48 err = 2.8229382656143784e-13
it = 49 err = 1.6508749110510983e-13
it = 50 err = 9.667673584261733e-14
it = 51 err = 5.87547533037912e-14
it = 52 err = 3.487259126492939e-14
it = 53 err = 2.1353900683901444e-14
it = 54 err = 1.2821170764192051e-14
it = 55 err = 7.280305958730234e-15
it = 56 err = 4.271331523280645e-15
[7]:
# the vector potential is not supposed to look nice
Draw (gfu, mesh, "vector-potential", draw_surf=False)
Draw (curl(gfu), mesh, "B-field", draw_surf=False)
Draw (1/(mu0*mur)*curl(gfu)-mag, mesh, "H-field", draw_surf=False)