This page was generated from unit-2.1.7-facetspace-mg/facetspace-mg.ipynb.
2.1.7 Multigrid for hybrid methods¶
Mixed methods for second order problems can often be reduced to the mesh facet, so called hybrid mixed methods. Simiar, hybrid DG methods introduce new variables on the facets, such that the bulk of element variables can be condensed out.
We show how to setup a multigrid preconditioner for hybrid methods. Interesting applications are nearly incompressible materials, or Stokes, discretized by \(H(\operatorname{div})\)-conforming HDG or hybrid mixed methods.
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from ngsolve.la import EigenValues_Preconditioner
The hybrid DG method:
On \(V_h = V_T \times V_F = P^k({\mathcal T}) \times P^k ({\mathcal F})\) we define the bilinear form
Element variables can be condensed out, which leads to a system reduced to the Skeleton.
When splitting a large triangle \(T_H\) into small trianles, the functions on \(\partial T_H\) have a canonical representation on the facets of the fine triangles. However, facet variables on internal edges of \(T_H\) are not defined by embedding. The HarmonicProlongation
provides the energy optimal extension to the internal edges. To define energy optimal we need the energy defined by a bilinear form.
[2]:
ngmesh = unit_square.GenerateMesh(maxh=2)
mesh = Mesh(ngmesh)
order = 3
fes = L2(mesh, order=order) * FacetFESpace(mesh, order=order, hoprolongation=True, dirichlet=".*")
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(2)
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = u*v*dx+ grad(u)*grad(v)*dx - n*grad(u)*(v-vhat)*dS - n*grad(v)*(u-uhat)*dS + 5*(order+1)**2/h*(u-uhat)*(v-vhat)*dS
bfa = BilinearForm(HDGform, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa, inverse="sparsecholesky")
pre = preconditioners.MultiGrid(bfa, blocktype=["vertexpatch"], cycle=1)
[3]:
with TaskManager():
for l in range(7):
mesh.Refine()
bfa.Assemble()
# pre.Update()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam_min/lam_max = ", lam[0], lam[-1])
l = 0 ndof = 144 lam_min/lam_max = 0.9999999999999993 0.9999999999999993
l = 1 ndof = 544 lam_min/lam_max = 0.9573848616699543 0.9999918601826863
l = 2 ndof = 2112 lam_min/lam_max = 0.9261189386281288 0.9999692236038735
l = 3 ndof = 8320 lam_min/lam_max = 0.9325349652513784 0.9998939800629592
l = 4 ndof = 33024 lam_min/lam_max = 0.92945510895588 0.9997230751035944
l = 5 ndof = 131584 lam_min/lam_max = 0.9282844459834527 0.9996349409051806
l = 6 ndof = 525312 lam_min/lam_max = 0.9280114490358107 0.9995334765161776
[4]:
f = LinearForm (x*v*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager():
Solve (bfa*gfu==f, pre, lin_solver=solvers.CGSolver, printrates=True)
CG iteration 1, residual = 0.09459461645928992
CG iteration 2, residual = 0.0005944516866628238
CG iteration 3, residual = 7.695100604718358e-06
CG iteration 4, residual = 2.0699972197723346e-07
CG iteration 5, residual = 3.8945463326402356e-09
CG iteration 6, residual = 4.9504671345225695e-11
CG iteration 7, residual = 1.0763303055548899e-12
CG iteration 8, residual = 2.096450968451275e-14
[5]:
Draw (gfu.components[0]);
Hybrid-mixed methods:¶
Find \(\sigma, u, \widehat u \in \Sigma_h \times V_h \times F_h\):
where \(\Sigma_h\) is an discontinuous \(H(div)\) finite element space, \(V_h\) a sub-space of \(L_2\), and \(F_h\) consists of polynomials on every facet.
[6]:
ngmesh = unit_square.GenerateMesh(maxh=0.2)
mesh = Mesh(ngmesh)
order = 2
fesSigma = PrivateSpace(Discontinuous(HDiv(mesh, order=order, RT=True)))
fesL2 = L2(mesh, order=order)
fesFacet = FacetFESpace(mesh, order=order, hoprolongation=True, dirichlet=".*")
fes = fesSigma*fesL2*fesFacet
(sigma, u,uhat), (tau, v,vhat) = fes.TnT()
n = specialcf.normal(2)
dS = dx(element_vb=BND)
mixedform = -sigma*tau*dx
mixedform += div(sigma)*v*dx - sigma*n*vhat*dS
mixedform += div(tau)*u*dx - tau*n*uhat*dS
bfa = BilinearForm(mixedform, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa, inverse="sparsecholesky")
pre = preconditioners.MultiGrid(bfa, blocktype=["vertexpatch"], cycle=1)
for l in range(5):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam_min/lam_max = ", lam[0], lam[-1])
l = 0 ndof = 2328 lam_min/lam_max = 0.8830690135570511 1.000082660916307
l = 1 ndof = 9192 lam_min/lam_max = 0.8695401255366382 0.9995622254215344
l = 2 ndof = 36528 lam_min/lam_max = 0.8480639402311638 0.9985740487773203
l = 3 ndof = 145632 lam_min/lam_max = 0.830706421034568 0.9979298221317969
l = 4 ndof = 581568 lam_min/lam_max = 0.8389819990459044 0.9976337192728126
[7]:
f = LinearForm(x*v*dx).Assemble()
gfu = GridFunction(fes)
Solve(bfa*gfu==f, pre, solvers.CGSolver, printrates=True)
Draw (gfu.components[1]);
CG iteration 1, residual = 0.09771383816444208
CG iteration 2, residual = 0.0011964806411029606
CG iteration 3, residual = 3.13755506370263e-05
CG iteration 4, residual = 9.5216727952247e-07
CG iteration 5, residual = 3.248449810413196e-08
CG iteration 6, residual = 1.649970071284961e-09
CG iteration 7, residual = 8.248735706462719e-11
CG iteration 8, residual = 3.983130055402826e-12
CG iteration 9, residual = 2.0772868157657282e-13
CG iteration 10, residual = 1.2019646043967861e-14
Nearly incompressible materials, H(div)-conforming HDG¶
[Lehrenfeld+Schöberl, 2016]
[8]:
ngmesh = unit_square.GenerateMesh(maxh=0.3)
mesh = Mesh(ngmesh)
order = 3
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet=".*")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(2)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 1*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, smoother="block", smoothingsteps=1, blocktype=["vertexpatch"], cycle=1)
[9]:
with TaskManager():
for l in range(4):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, lam[0], lam[-1])
l = 0 ndof = 2190 0.8031555871568468 1.0389867675724136
l = 1 ndof = 8622 0.6881351203081549 1.0480292176047623
l = 2 ndof = 34158 0.6819544900463768 1.0702830065295164
l = 3 ndof = 135918 0.6926495255892722 1.0752680621326927
[10]:
with TaskManager():
f = LinearForm ((0.5-y)*v[0]*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager(pajetrace=10**8):
solvers.BVP(bfa, f, gfu, pre, print=True)
CG iteration 1, residual = 0.019746505238806077
CG iteration 2, residual = 0.00020770356871144193
CG iteration 3, residual = 1.3541629720211819e-05
CG iteration 4, residual = 1.2095124817153258e-06
CG iteration 5, residual = 1.179558828545428e-07
CG iteration 6, residual = 1.2588391515432099e-08
CG iteration 7, residual = 1.4899585819205694e-09
CG iteration 8, residual = 1.6707190756664485e-10
[11]:
Draw (gfu.components[0])
[11]:
BaseWebGuiScene
Nearly incompressible materials / Stokes in 3D¶
[12]:
ngmesh = unit_cube.GenerateMesh(maxh=2)
mesh = Mesh(ngmesh)
order = 2
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet=".*")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(3)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = 0.001*u*v*dx+InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 5*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, smoother="block", smoothingsteps=3, blocktype=["edgepatch"], cycle=1)
[13]:
with TaskManager():
for l in range(3):
mesh.Refine()
bfa.Assemble()
# pre.Update()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam min/max = ", lam[0], lam[-1])
l = 0 ndof = 5574 lam min/max = 0.5060508739232115 1.211263015326634
l = 1 ndof = 43470 lam min/max = 0.25806967546034454 1.290585812146651
l = 2 ndof = 342894 lam min/max = 0.23767448244474024 1.4487474122388488
[14]:
with TaskManager():
f = LinearForm ((0.5-y)*v[0]*dx).Assemble()
gfu = GridFunction(fes)
gfu.vec[:]=0
with TaskManager():
Solve(bfa*gfu==f, pre, solvers.CGSolver, printrates=True)
CG iteration 1, residual = 0.016109906113163857
CG iteration 2, residual = 0.00366311973031459
CG iteration 3, residual = 0.0013763841180129634
CG iteration 4, residual = 0.000550570053046384
CG iteration 5, residual = 0.00023667946218133964
CG iteration 6, residual = 0.00010014395420474422
CG iteration 7, residual = 4.3494048121128265e-05
CG iteration 8, residual = 1.659018620943864e-05
CG iteration 9, residual = 6.1874857252356745e-06
CG iteration 10, residual = 2.3330442207180208e-06
CG iteration 11, residual = 9.50929887874568e-07
CG iteration 12, residual = 3.777077595834187e-07
CG iteration 13, residual = 1.6068815303153953e-07
CG iteration 14, residual = 6.952194561499219e-08
CG iteration 15, residual = 2.7823124594705164e-08
CG iteration 16, residual = 1.0924337753527088e-08
CG iteration 17, residual = 4.4878710762152574e-09
CG iteration 18, residual = 1.862723025372337e-09
CG iteration 19, residual = 7.402872804346373e-10
CG iteration 20, residual = 2.9942322000910386e-10
CG iteration 21, residual = 1.2726933117921793e-10
CG iteration 22, residual = 5.4302541953707926e-11
CG iteration 23, residual = 2.2027345474609933e-11
CG iteration 24, residual = 8.934086296755173e-12
CG iteration 25, residual = 3.678442279220687e-12
CG iteration 26, residual = 1.45791056347443e-12
CG iteration 27, residual = 5.886329949379478e-13
CG iteration 28, residual = 2.5680650723011284e-13
CG iteration 29, residual = 1.0908752441092758e-13
CG iteration 30, residual = 4.4221744975308226e-14
CG iteration 31, residual = 1.804574721419751e-14
CG iteration 32, residual = 7.616932079080318e-15
[15]:
clipping = { "function" : True, "pnt" : (0.5,0.5,0.51), "vec" : (0,0,-1) }
Draw (gfu.components[0], order=2, clipping=clipping);
Flow channel in 3D¶
[16]:
from ngsolve import *
from netgen.occ import *
from ngsolve.webgui import Draw
from ngsolve.krylovspace import CGSolver
box = Box((0,0,0), (2.5,0.41,0.41))
box.faces.name="wall"
box.faces.Min(X).name="inlet"
box.faces.Max(X).name="outlet"
cyl = Cylinder((0.5,0.2,0), Z, h=0.41,r=0.05)
cyl.faces.name="cyl"
shape = box-cyl
mesh = shape.GenerateMesh(maxh=0.2).Curve(3)
Draw (mesh);
[17]:
order = 2
fesT = HDiv(mesh, order=order, hoprolongation=True, dirichlet="wall|inlet|cyl")
fesF = TangentialFacetFESpace(mesh, order=order, hoprolongation=True, highest_order_dc=True, dirichlet=".*")
fes = fesT*fesF
(u,uhat), (v,vhat) = fes.TnT()
n = specialcf.normal(3)
def tang(v): return v-(v*n)*n
h = specialcf.mesh_size
dS = dx(element_vb=BND)
HDGform = 0.001*u*v*dx+InnerProduct(Grad(u),Grad(v))*dx - (Grad(u)*n)*tang(v-vhat)*dS - (Grad(v)*n)*tang(u-uhat)*dS \
+ 5*(order+1)**2/h*tang(u-uhat)*tang(v-vhat)*dS
with TaskManager():
bfa = BilinearForm(HDGform + 1e3*div(u)*div(v)*dx, condense=True).Assemble()
fes.SetHarmonicProlongation(bfa)
pre = preconditioners.MultiGrid(bfa, inverse="sparsecholesky", smoother="block", smoothingsteps=1, blocktype=["edgepatch"], cycle=1)
[18]:
with TaskManager():
for l in range(1):
mesh.Refine()
bfa.Assemble()
lam = EigenValues_Preconditioner(bfa.mat, pre)
print ("l =", l, "ndof =", fes.ndof, "lam min/max = ", lam[0], lam[-1])
l = 0 ndof = 1779310 lam min/max = 0.07395292018165744 3.336861388881024
[19]:
gfu = GridFunction(fes)
uin = (1.5*4*y*(0.41-y)/(0.41*0.41)*z*(0.41-z)/0.41**2,0, 0)
gfu.components[0].Set(uin, definedon=mesh.Boundaries("inlet"))
inv = CGSolver(bfa.mat, pre.mat, printrates=True, tol=1e-5)
with TaskManager():
gfu.vec.data -= inv@bfa.mat * gfu.vec
gfu.vec.data += bfa.harmonic_extension * gfu.vec
CG iteration 1, residual = 14.705439018174092
CG iteration 2, residual = 0.653578133512307
CG iteration 3, residual = 0.29491228099866934
CG iteration 4, residual = 0.15012499682509362
CG iteration 5, residual = 0.11534735471252733
CG iteration 6, residual = 0.07205075926982459
CG iteration 7, residual = 0.05198208987552155
CG iteration 8, residual = 0.03870922114839903
CG iteration 9, residual = 0.02285926950135315
CG iteration 10, residual = 0.01669712323195213
CG iteration 11, residual = 0.010896954086064729
CG iteration 12, residual = 0.00755285113544362
CG iteration 13, residual = 0.005539446505046478
CG iteration 14, residual = 0.004139996160178105
CG iteration 15, residual = 0.0030604930093190443
CG iteration 16, residual = 0.0021714417553166513
CG iteration 17, residual = 0.001557073093463886
CG iteration 18, residual = 0.0011741926334626056
CG iteration 19, residual = 0.0008572928809041739
CG iteration 20, residual = 0.0006182722955589093
CG iteration 21, residual = 0.0005100286526488636
CG iteration 22, residual = 0.0003640054422597856
CG iteration 23, residual = 0.00027695011270458924
CG iteration 24, residual = 0.00020615710374353375
CG iteration 25, residual = 0.00014504450758837348
[20]:
clipping = { "function" : True, "pnt" : (1,0.2,0.2 ), "vec" : (0,0,-1.0) }
Draw (gfu.components[0], mesh, order=2, clipping=clipping);
Pressure:
[21]:
Draw (div(gfu.components[0]), mesh, order=2, clipping=clipping, draw_surf=False);
[ ]:
[ ]:
[ ]: