This page was generated from unit-2.7-hybrid/hybrid.ipynb.
2.7 Facet spaces and hybrid methods¶
Mixed methods for second order problems lead to saddle point problems, and indefinite matrices. By hybridization one obtains a positive definite system again. It’s structure is similar to the non-conforming \(P^1\) method, but hybridization works for any order. See text-book by Brezzi and Fortin.
One skips the normal-continuity of the \(H(div)\) variable, and reinforces it by a Lagrange parameter. This leads to the following discrete system:
Find \(\sigma, u, \widehat u \in \Sigma_h \times V_h \times F_h\):
where \(\Sigma_h\) is an discontinuous \(H(div)\) finite element space, \(V_h\) a sub-space of \(L_2\), and \(F_h\) consists of polynomials on every edge.
[1]:
from netgen.geom2d import unit_square
from ngsolve import *
from ngsolve.webgui import Draw
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
same example as in 'mixed':
[2]:
source = sin(3.14*x)
ud = CoefficientFunction(5)
g = CoefficientFunction([y*(1-y) if bc=="left" else 0 for bc in mesh.GetBoundaries()])
lam = 10
define spaces:
The discontinuous flag generates an element-wise \(H(Div)\)-space
FacetFESpace lives only on facets (i.e. faces in 3D, edges in 2D, points in 1D)
Boundary conditions are now posed for the facet-space
[3]:
order = 3
V = HDiv(mesh, order=order, discontinuous=True)
# V = Discontinuous(HDiv(mesh, order=order))
Q = L2(mesh, order=order-1)
F = FacetFESpace(mesh, order=order, dirichlet="bottom")
X = V*Q*F
print ("sigmadofs:", X.Range(0))
print ("udofs: ", X.Range(1))
print ("uhatdofs: ", X.Range(2))
sigmadofs: [0,1120)
udofs: [1120,1456)
uhatdofs: [1456,1832)
Assemble forms. The jump-term is rewritten as
[4]:
sigma,u,uhat = X.TrialFunction()
tau,v,vhat = X.TestFunction()
a = BilinearForm(X, condense=False)
a += (1/lam * sigma*tau + div(sigma)*v + div(tau)*u) * dx
n = specialcf.normal(mesh.dim)
a += (-sigma*n*vhat-tau*n*uhat) * dx(element_boundary=True)
c = Preconditioner(a, "bddc")
f = LinearForm(X)
f += -source*v * dx - g*vhat.Trace() * ds
a.Assemble()
print ("A non-zero", a.mat.nze)
gfu = GridFunction(X)
A non-zero 79680
Solve system. Either we leave everything to the sparse direct solver, or use CG
[5]:
f.Assemble()
gfu.components[2].Set(ud, BND)
if a.condense:
f.vec.data += a.harmonic_extension_trans * f.vec
solvers.CG(mat=a.mat, pre=c.mat, rhs=f.vec, sol=gfu.vec, initialize=False)
gfu.vec.data += a.harmonic_extension * gfu.vec
gfu.vec.data += a.inner_solve * f.vec
else:
r = f.vec.CreateVector()
r.data = f.vec - a.mat * gfu.vec
inv = a.mat.Inverse(freedofs=X.FreeDofs())
gfu.vec.data += inv * r
[6]:
Draw (gfu.components[0], mesh, "sigma")
Draw (gfu.components[1], mesh, "u")
check type <class 'ngsolve.comp.GridFunction'>
check type <class 'ngsolve.comp.GridFunction'>
check type <class 'ngsolve.comp.GridFunction'>
check type <class 'ngsolve.comp.GridFunction'>
[6]:
BaseWebGuiScene
[ ]: