This page was generated from unit-1.1-poisson/poisson.ipynb.

1.1 First NGSolve example

Let us solve the Poisson problem of finding \(u\) satisfying

\[\begin{split}\begin{aligned} -\Delta u & = f && \text { in the unit square}, \\ u & = 0 && \text{ on the bottom and right parts of the boundary}, \\ \frac{\partial u }{\partial n } & = 0 && \text{ on the remaining boundary parts}. \end{aligned}\end{split}\]

Quick steps to solution:

1. Import NGSolve and Netgen Python modules:

[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.geom2d import unit_square

2. Generate an unstructured mesh

[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
mesh.nv, mesh.ne   # number of vertices & elements
 Generate Mesh from spline geometry
 Boundary mesh done, np = 20
 CalcLocalH: 20 Points 0 Elements 0 Surface Elements
 Meshing domain 1 / 1
 load internal triangle rules
 Surface meshing done
 Edgeswapping, topological
 Smoothing
 Split improve
 Combine improve
 Smoothing
 Edgeswapping, metric
 Smoothing
 Split improve
 Combine improve
 Smoothing
 Edgeswapping, metric
 Smoothing
 Split improve
 Combine improve
 Smoothing
 Update mesh topology
[2]:
(38, 54)
 Update clusters
  • Here we prescribed a maximal mesh-size of 0.2 using the maxh flag.

  • The mesh can be viewed by switching to the Mesh tab in the Netgen GUI.

3. Declare a finite element space:

[3]:
fes = H1(mesh, order=2, dirichlet="bottom|right")
fes.ndof  # number of unknowns in this space
[3]:
129

Python’s help system displays further documentation.

[4]:
help(fes)
Help on H1 in module ngsolve.comp object:

class H1(FESpace)
 |  An H1-conforming finite element space.
 |
 |  The H1 finite element space consists of continuous and
 |  element-wise polynomial functions. It uses a hierarchical (=modal)
 |  basis built from integrated Legendre polynomials on tensor-product elements,
 |  and Jaboci polynomials on simplicial elements.
 |
 |  Boundary values are well defined. The function can be used directly on the
 |  boundary, using the trace operator is optional.
 |
 |  The H1 space supports variable order, which can be set individually for edges,
 |  faces and cells.
 |
 |  Internal degrees of freedom are declared as local dofs and are eliminated
 |  if static condensation is on.
 |
 |  The wirebasket consists of all vertex dofs. Optionally, one can include the
 |  first (the quadratic bubble) edge basis function, or all edge basis functions
 |  into the wirebasket.
 |
 |   Keyword arguments can be:
 |  order: int = 1
 |    order of finite element space
 |  complex: bool = False
 |    Set if FESpace should be complex
 |  dirichlet: regexpr
 |    Regular expression string defining the dirichlet boundary.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet = 'top|right'
 |  dirichlet_bbnd: regexpr
 |    Regular expression string defining the dirichlet bboundary,
 |    i.e. points in 2D and edges in 3D.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet_bbnd = 'top|right'
 |  dirichlet_bbbnd: regexpr
 |    Regular expression string defining the dirichlet bbboundary,
 |    i.e. points in 3D.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet_bbbnd = 'top|right'
 |  definedon: Region or regexpr
 |    FESpace is only defined on specific Region, created with mesh.Materials('regexpr')
 |    or mesh.Boundaries('regexpr'). If given a regexpr, the region is assumed to be
 |    mesh.Materials('regexpr').
 |  dim: int = 1
 |    Create multi dimensional FESpace (i.e. [H1]^3)
 |  dgjumps: bool = False
 |    Enable discontinuous space for DG methods, this flag is needed for DG methods,
 |    since the dofs have a different coupling then and this changes the sparsity
 |    pattern of matrices.
 |  low_order_space: bool = True
 |    Generate a lowest order space together with the high-order space,
 |    needed for some preconditioners.
 |  order_policy: ORDER_POLICY = ORDER_POLICY.OLDSTYLE
 |    CONSTANT .. use the same fixed order for all elements,
 |    NODAL ..... use the same order for nodes of same shape,
 |    VARIABLE ... use an individual order for each edge, face and cell,
 |    OLDSTYLE .. as it used to be for the last decade
 |  wb_withedges: bool = true(3D) / false(2D)
 |    use lowest-order edge dofs for BDDC wirebasket
 |  wb_fulledges: bool = false
 |    use all edge dofs for BDDC wirebasket
 |
 |  Method resolution order:
 |      H1
 |      FESpace
 |      NGS_Object
 |      pybind11_builtins.pybind11_object
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __getstate__(...)
 |      __getstate__(self: ngsolve.comp.FESpace) -> tuple
 |
 |  __init__(...)
 |      __init__(self: ngsolve.comp.H1, mesh: ngsolve.comp.Mesh, autoupdate: bool = False, **kwargs) -> None
 |
 |  __setstate__(...)
 |      __setstate__(self: ngsolve.comp.H1, arg0: tuple) -> None
 |
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |
 |  __flags_doc__(...) from builtins.PyCapsule
 |      __flags_doc__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |
 |  __dict__
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from FESpace:
 |
 |  ApplyM(...)
 |      ApplyM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |      Apply mass-matrix. Available only for L2-like spaces
 |
 |  ConvertL2Operator(...)
 |      ConvertL2Operator(self: ngsolve.comp.FESpace, l2space: ngsolve.comp.FESpace) -> BaseMatrix
 |
 |  CouplingType(...)
 |      CouplingType(self: ngsolve.comp.FESpace, dofnr: int) -> ngsolve.comp.COUPLING_TYPE
 |
 |
 |               Get coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |  CreateDirectSolverCluster(...)
 |      CreateDirectSolverCluster(self: ngsolve.comp.FESpace, **kwargs) -> list
 |
 |  Elements(...)
 |      Elements(self: ngsolve.comp.FESpace, VOL_or_BND: ngsolve.comp.VorB = <VorB.VOL: 0>) -> ngsolve.comp.FESpaceElementRange
 |
 |
 |      Returns an iterable range of elements.
 |
 |      Parameters:
 |
 |      VOL_or_BND : ngsolve.comp.VorB
 |        input VOL, BND, BBND,...
 |
 |  FinalizeUpdate(...)
 |      FinalizeUpdate(self: ngsolve.comp.FESpace) -> None
 |
 |      finalize update
 |
 |  FreeDofs(...)
 |      FreeDofs(self: ngsolve.comp.FESpace, coupling: bool = False) -> pyngcore.BitArray
 |
 |
 |
 |      Return BitArray of free (non-Dirichlet) dofs\n
 |      coupling=False ... all free dofs including local dofs\n
 |      coupling=True .... only element-boundary free dofs
 |
 |      Parameters:
 |
 |      coupling : bool
 |        input coupling
 |
 |  GetDofNrs(...)
 |      GetDofNrs(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. GetDofNrs(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |        input element id
 |
 |
 |
 |      2. GetDofNrs(self: ngsolve.comp.FESpace, ni: ngsolve.comp.NodeId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ni : ngsolve.comp.NodeId
 |        input node id
 |
 |  GetDofs(...)
 |      GetDofs(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> pyngcore.BitArray
 |
 |
 |      Returns all degrees of freedom in given region.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  GetFE(...)
 |      GetFE(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> object
 |
 |
 |      Get the finite element to corresponding element id.
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |         input element id
 |
 |  GetOrder(...)
 |      GetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId) -> int
 |
 |      return order of node.
 |      by now, only isotropic order is supported here
 |
 |  GetTrace(...)
 |      GetTrace(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  GetTraceTrans(...)
 |      GetTraceTrans(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  HideAllDofs(...)
 |      HideAllDofs(self: ngsolve.comp.FESpace, component: object = <ngsolve.ngstd.DummyArgument>) -> None
 |
 |      set all visible coupling types to HIDDEN_DOFs (will be overwritten by any Update())
 |
 |  InvM(...)
 |      InvM(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None) -> BaseMatrix
 |
 |  Mass(...)
 |      Mass(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None, definedon: Optional[ngsolve.comp.Region] = None) -> BaseMatrix
 |
 |  ParallelDofs(...)
 |      ParallelDofs(self: ngsolve.comp.FESpace) -> ngsolve.la.ParallelDofs
 |
 |      Return dof-identification for MPI-distributed meshes
 |
 |  Prolongation(...)
 |      Prolongation(self: ngsolve.comp.FESpace) -> ngmg::Prolongation
 |
 |      Return prolongation operator for use in multi-grid
 |
 |  Range(...)
 |      Range(self: ngsolve.comp.FESpace, arg0: int) -> ngsolve.la.DofRange
 |
 |      deprecated, will be only available for ProductSpace
 |
 |  SetCouplingType(...)
 |      SetCouplingType(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetCouplingType(self: ngsolve.comp.FESpace, dofnr: int, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |
 |
 |      2. SetCouplingType(self: ngsolve.comp.FESpace, dofnrs: ngsolve.ngstd.IntRange, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type for interval of dofs.
 |
 |      Parameters:
 |
 |      dofnrs : Range
 |        range of dofs
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |  SetDefinedOn(...)
 |      SetDefinedOn(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> None
 |
 |
 |      Set the regions on which the FESpace is defined.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  SetOrder(...)
 |      SetOrder(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetOrder(self: ngsolve.comp.FESpace, element_type: ngsolve.fem.ET, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      element_type : ngsolve.fem.ET
 |        input element type
 |
 |      order : object
 |        input polynomial order
 |
 |
 |      2. SetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      nodeid : ngsolve.comp.NodeId
 |        input node id
 |
 |      order : int
 |        input polynomial order
 |
 |  SolveM(...)
 |      SolveM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |
 |               Solve with the mass-matrix. Available only for L2-like spaces.
 |
 |      Parameters:
 |
 |      vec : ngsolve.la.BaseVector
 |        input right hand side vector
 |
 |      rho : ngsolve.fem.CoefficientFunction
 |        input CF
 |
 |  TestFunction(...)
 |      TestFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a testfunction for :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  TnT(...)
 |      TnT(self: ngsolve.comp.FESpace) -> Tuple[object, object]
 |
 |      Return a tuple of trial and testfunction
 |
 |  TraceOperator(...)
 |      TraceOperator(self: ngsolve.comp.FESpace, tracespace: ngsolve.comp.FESpace, average: bool) -> BaseMatrix
 |
 |  TrialFunction(...)
 |      TrialFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a trialfunction in :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  Update(...)
 |      Update(self: ngsolve.comp.FESpace) -> None
 |
 |      update space after mesh-refinement
 |
 |  UpdateDofTables(...)
 |      UpdateDofTables(self: ngsolve.comp.FESpace) -> None
 |
 |      update dof-tables after changing polynomial order distribution
 |
 |  __eq__(...)
 |      __eq__(self: ngsolve.comp.FESpace, space: ngsolve.comp.FESpace) -> bool
 |
 |  __mul__(...)
 |      __mul__(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace) -> ngcomp::CompoundFESpace
 |
 |  __pow__(...)
 |      __pow__(self: ngsolve.comp.FESpace, arg0: int) -> ngcomp::CompoundFESpaceAllSame
 |
 |  __str__(...)
 |      __str__(self: ngsolve.comp.FESpace) -> str
 |
 |  __timing__(...)
 |      __timing__(self: ngsolve.comp.FESpace) -> object
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from FESpace:
 |
 |  __special_treated_flags__(...) from builtins.PyCapsule
 |      __special_treated_flags__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from FESpace:
 |
 |  components
 |      deprecated, will be only available for ProductSpace
 |
 |  couplingtype
 |
 |  dim
 |      multi-dim of FESpace
 |
 |  globalorder
 |      query global order of space
 |
 |  is_complex
 |
 |  loembedding
 |
 |  lospace
 |
 |  mesh
 |      mesh on which the FESpace is created
 |
 |  ndof
 |      number of degrees of freedom
 |
 |  ndofglobal
 |      global number of dofs on MPI-distributed mesh
 |
 |  type
 |      type of finite element space
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from FESpace:
 |
 |  __hash__ = None
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from NGS_Object:
 |
 |  __memory__
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from NGS_Object:
 |
 |  name
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from pybind11_builtins.pybind11_object:
 |
 |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
 |      Create and return a new object.  See help(type) for accurate signature.

4. Declare test function, trial function, and grid function

  • Test and trial function are symbolic objects - called ProxyFunctions - that help you construct bilinear forms (and have no space to hold solutions).

  • GridFunctions, on the other hand, represent functions in the finite element space and contains memory to hold coefficient vectors.

[5]:
u = fes.TrialFunction()  # symbolic object
v = fes.TestFunction()   # symbolic object
gfu = GridFunction(fes)  # solution

Alternately, you can get both the trial and test variables at once:

[6]:
u, v = fes.TnT()

5. Define and assemble linear and bilinear forms:

[7]:
a = BilinearForm(fes, symmetric=True)
a += grad(u)*grad(v)*dx
a.Assemble()

f = LinearForm(fes)
f += x*v*dx
f.Assemble()
assemble VOL element 54/54
[7]:
<ngsolve.comp.LinearForm at 0x7f01c4c08270>
assemble VOL element 54/54

You can examine the linear system in more detail:

[8]:
print(f.vec)
 0.000333333
 0.00888667
 0.00633333
 0.000772552
 0.00388886
 0.00745593
 0.0102799
 0.0115007
 0.0150668
 0.0169176
 0.0154171
 0.0183849
 0.0212923
 0.0109064
 0.00750505
 0.00352697
 0.000376105
 0.00262832
 0.00051516
 0.00266077
 0.0117876
 0.0178168
 0.0223235
 0.0204184
 0.0318376
 0.0272957
 0.029483
 0.0190557
 0.0227156
 0.00905798
 0.00529671
 0.00779569
 0.020463
 0.0157845
 0.0216524
 0.0157801
 0.0172011
 0.019586
 -6.66667e-05
 -3.33333e-05
 -0.000525777
 -0.000575773
 -0.00109151
 -0.0008
 -0.000766667
 -9.18288e-05
 -1.88053e-05
 -0.000121132
 -0.000238755
 -0.000215067
 -0.000426062
 -0.000372909
 -0.000551384
 -0.000691744
 -0.000485002
 -0.000796725
 -0.000909071
 -0.000911696
 -0.000942778
 -0.000763411
 -0.00110769
 -0.0012761
 -0.000653931
 -0.00142763
 -0.00133086
 -0.000654795
 -0.00125029
 -0.00125106
 -0.0016032
 -0.00147642
 -0.000475024
 -0.00142506
 -0.0010807
 -0.00045191
 -0.000903122
 -0.000886228
 -0.000204734
 -0.00073304
 -0.000494315
 -0.00034316
 -0.000246364
 -1.88053e-05
 -7.52211e-05
 -2.5758e-05
 -0.000173161
 -0.000213128
 -0.000357643
 -2.5758e-05
 -0.000103032
 -0.000329228
 -0.000194844
 -0.00064017
 -0.000422578
 -0.000560041
 -0.000834752
 -0.000785222
 -0.00070094
 -0.000921418
 -0.00105231
 -0.000949261
 -0.00104196
 -0.00117992
 -0.00101029
 -0.000970793
 -0.00116359
 -0.000974281
 -0.000925954
 -0.00105527
 -0.00099741
 -0.000847599
 -0.00087727
 -0.000615988
 -0.000891989
 -0.000762229
 -0.000931528
 -0.000320916
 -0.000490049
 -0.0003756
 -0.000511811
 -0.000491896
 -0.000762552
 -0.000835836
 -0.000773654
 -0.000642566
 -0.00076271
 -0.00081234
 -0.000855256
 -0.000808305
 -0.000755427


[9]:
print(a.mat)
Row 0:   0: 1   4: -0.5   19: -0.5   38: -0.0833333   39: -0.0833333   49: 0.166667
Row 1:   1: 0.828444   7: -0.208707   8: -0.210132   23: -0.409604   40: -0.034013   41: -0.0342543   42: -0.0698066   58: 0.0687976   60: 0.0692764
Row 2:   2: 1   11: -0.5   12: -0.5   43: -0.0833333   44: -0.0833333   68: 0.166667
Row 3:   3: 0.907169   15: -0.407338   16: -0.376463   30: -0.123368   45: -0.020713   46: 0.000151649   47: -0.130634   80: 0.0886026   82: 0.0625923
Row 4:   0: -0.5   4: 1.8918   5: -0.369703   19: -0.170695   20: -0.851406   38: 0   39: 0.0833333   48: -0.0553087   49: -0.169926   50: -0.0900664   52: 0.116926   89: 0.115041
Row 5:   4: -0.369703   5: 1.76479   6: -0.315355   20: -0.373272   21: -0.70646   48: -0.0302454   50: 0.0918626   51: -0.0537908   52: -0.12557   53: -0.0845258   55: 0.10635   91: 0.0959192
Row 6:   5: -0.315355   6: 1.74934   7: -0.271622   21: -0.444807   22: -0.71756   51: -0.0387141   53: 0.0912733   54: -0.0577312   55: -0.114421   56: -0.0806907   57: 0.103002   94: 0.0972825
Row 7:   1: -0.208707   6: -0.271622   7: 1.82575   22: -0.375475   23: -0.969947   40: -0.0837431   42: 0.118528   54: -0.0420473   56: 0.0873176   57: -0.123185   58: -0.0553164   97: 0.0984466
Row 8:   1: -0.210132   8: 1.88178   9: -0.354044   23: -1.05651   24: -0.261086   41: -0.0829256   42: 0.117948   59: -0.0322254   60: -0.0463111   61: -0.152168   63: 0.0912327   100: 0.104449
Row 9:   8: -0.354044   9: 1.7442   10: -0.268795   24: -0.640588   25: -0.480773   59: -0.0552752   61: 0.114283   62: -0.0341102   63: -0.105026   64: -0.0962885   66: 0.0789093   101: 0.0975081
Row 10:   9: -0.268795   10: 1.77359   11: -0.272339   25: -0.832083   26: -0.400373   62: -0.0686401   64: 0.113439   65: -0.0327251   66: -0.0788029   67: -0.11543   69: 0.078115   104: 0.104044
Row 11:   2: -0.5   10: -0.272339   11: 1.97625   12: -0.118504   26: -1.0854   43: 0   44: 0.0833333   65: -0.0698849   67: 0.115275   68: -0.194349   69: -0.0651405   71: 0.130766
Row 12:   2: -0.5   11: -0.118504   12: 1.80573   13: -0.26228   26: -0.248259   27: -0.676685   43: 0.0833333   44: 0   68: -0.119671   69: 0.0560888   70: -0.0411842   71: -0.0913473   72: -0.0487517   74: 0.0848976   107: 0.0766349
Row 13:   12: -0.26228   13: 1.81175   14: -0.428891   27: -0.813095   28: -0.307486   70: -0.0605924   72: 0.104306   73: -0.0361696   74: -0.0587915   75: -0.146405   77: 0.107651   109: 0.0900017
Row 14:   13: -0.428891   14: 1.79855   15: -0.254586   28: -0.343721   29: -0.771353   73: -0.0404916   75: 0.111973   76: -0.0578574   77: -0.142183   78: -0.0592263   79: 0.100288   111: 0.0874967
Row 15:   3: -0.407338   14: -0.254586   15: 1.75967   29: -0.52416   30: -0.573581   45: -0.0625066   47: 0.130396   76: -0.0447659   78: 0.0871969   79: -0.0755213   80: -0.110484   115: 0.0756844
Row 16:   3: -0.376463   16: 2.08248   17: -0.374644   30: -1.33137   46: -0.111099   47: 0.173843   81: -0.110796   82: -0.125185   84: 0.173237
Row 17:   16: -0.374644   17: 1.78398   18: -0.43722   30: -0.336404   31: -0.30274   35: -0.332973   81: -0.000151649   82: 0.0625923   83: -0.000386213   84: -0.0860908   85: -0.104715   86: -0.105986   88: 0.0732563   117: 0.0795659   119: 0.0819158
Row 18:   17: -0.43722   18: 2.01666   19: -0.441855   31: -1.13758   83: -0.0944124   85: 0.167282   87: -0.0951848   88: -0.146513   90: 0.168827
Row 19:   0: -0.5   4: -0.170695   18: -0.441855   19: 1.80929   20: -0.457008   31: -0.239727   38: 0.0833333   39: 0   49: -0.122284   50: 0.0674001   87: 0.000386213   88: 0.0732563   89: -0.0687899   90: -0.11086   92: 0.0775578
Row 20:   4: -0.851406   5: -0.373272   19: -0.457008   20: 3.55115   21: -0.621608   31: -0.660832   33: -0.587027   48: 0.0855542   49: 0.125543   50: -0.0691963   52: -0.106394   53: 0.0830523   89: -0.156773   90: 0.107398   91: -0.0811964   92: -0.0858253   93: -0.0924734   96: 0.101746   118: 0.0885658
Row 21:   5: -0.70646   6: -0.444807   20: -0.621608   21: 3.49846   22: -0.562802   32: -0.707916   33: -0.454863   51: 0.0925049   52: 0.115038   53: -0.0897997   55: -0.102651   56: 0.0842808   91: -0.106796   93: 0.095359   94: -0.0895218   95: -0.0779072   96: -0.1164   99: 0.0990414   120: 0.0968518
Row 22:   6: -0.71756   7: -0.375475   21: -0.562802   22: 3.51385   23: -0.705204   24: -0.539682   32: -0.613124   54: 0.0997784   55: 0.110723   56: -0.0909077   57: -0.112022   58: 0.0748223   94: -0.10743   95: 0.090508   97: -0.055892   98: -0.119863   99: -0.0995268   100: 0.0986036   102: 0.111206
Row 23:   1: -0.409604   7: -0.969947   8: -1.05651   22: -0.705204   23: 3.76626   24: -0.624994   40: 0.117756   41: 0.11718   42: -0.166669   57: 0.132205   58: -0.0883035   60: -0.0906718   61: 0.149578   97: -0.125663   98: 0.110992   100: -0.156404
Row 24:   8: -0.261086   9: -0.640588   22: -0.539682   23: -0.624994   24: 3.4335   25: -0.471228   32: -0.347567   36: -0.548354   59: 0.0875006   60: 0.0677065   61: -0.111693   63: -0.0791442   64: 0.0984083   97: 0.0831084   98: -0.0824026   99: 0.0892412   100: -0.0466491   101: -0.0934947   102: -0.103974   103: -0.0548927   106: 0.0736245   121: 0.0726606
Row 25:   9: -0.480773   10: -0.832083   24: -0.471228   25: 3.56549   26: -0.53029   34: -0.379179   36: -0.871933   62: 0.10275   63: 0.0929375   64: -0.115559   66: -0.0779648   67: 0.113895   101: -0.122301   103: 0.107902   104: -0.110436   105: -0.113567   106: -0.0544203   108: 0.0849225   125: 0.0918406
Row 26:   10: -0.400373   11: -1.0854   12: -0.248259   25: -0.53029   26: 3.70321   27: -0.7952   34: -0.643685   65: 0.10261   66: 0.0778583   67: -0.113739   68: 0.147354   69: -0.0690633   71: -0.196926   72: 0.0909485   104: -0.0945973   105: 0.105121   107: -0.0517256   108: -0.0911502   110: 0.0933104
Row 27:   12: -0.676685   13: -0.813095   26: -0.7952   27: 3.69033   28: -0.707702   34: -0.697653   70: 0.101777   71: 0.157507   72: -0.146503   74: -0.105791   75: 0.139531   107: -0.122692   108: 0.0977186   109: -0.140104   110: -0.0999664   112: 0.118523
Row 28:   13: -0.307486   14: -0.343721   27: -0.707702   28: 3.52468   29: -0.895438   34: -0.473338   35: -0.287796   37: -0.509201   73: 0.0766612   74: 0.0796851   75: -0.105099   77: -0.101966   78: 0.082592   109: -0.0443342   110: 0.0825994   111: -0.0325616   112: -0.0842096   113: -0.137443   114: -0.0818333   116: 0.0992092   126: 0.0804999   127: 0.0862002
Row 29:   14: -0.771353   15: -0.52416   28: -0.895438   29: 3.72354   30: -0.968571   35: -0.564014   76: 0.102623   77: 0.136498   78: -0.110563   79: -0.13099   80: 0.115727   111: -0.127439   113: 0.14018   115: -0.0798592   116: -0.171739   117: 0.125561
Row 30:   3: -0.123368   15: -0.573581   16: -1.33137   17: -0.336404   29: -0.968571   30: 3.93186   35: -0.598564   45: 0.0832196   46: 0.110948   47: -0.173606   79: 0.106223   80: -0.0938455   81: 0.110948   82: 0   84: -0.181455   86: 0.126574   115: -0.0621923   116: 0.117398   117: -0.144212
Row 31:   17: -0.30274   18: -1.13758   19: -0.239727   20: -0.660832   31: 3.75805   33: -0.767936   35: -0.649229   83: 0.0947986   85: -0.159723   86: 0.115381   87: 0.0947986   88: 0   89: 0.110522   90: -0.165366   92: -0.0968204   93: 0.0964375   118: -0.0828523   119: -0.12158   123: 0.114404
Row 32:   21: -0.707916   22: -0.613124   24: -0.347567   32: 3.57504   33: -0.609107   36: -0.927505   37: -0.369818   94: 0.0996696   95: -0.0955243   96: 0.113841   98: 0.0912736   99: -0.0887558   102: -0.136374   103: 0.103028   120: -0.104609   121: -0.0441856   122: -0.126391   124: 0.0922859   128: 0.0957414
Row 33:   20: -0.587027   21: -0.454863   31: -0.767936   32: -0.609107   33: 3.5243   35: -0.372794   37: -0.732577   91: 0.092073   92: 0.105088   93: -0.099323   95: 0.0829234   96: -0.0991859   118: -0.0824973   119: 0.105399   120: -0.0854633   122: 0.104058   123: -0.14111   124: -0.0798048   127: 0.0978433
Row 34:   25: -0.379179   26: -0.643685   27: -0.697653   28: -0.473338   34: 3.53245   36: -0.710183   37: -0.628416   104: 0.100989   105: -0.119067   106: 0.0812748   107: 0.0977827   108: -0.0914909   109: 0.0944361   110: -0.0759434   112: -0.132415   114: 0.116869   125: -0.0603016   126: -0.109524   128: 0.0973906
Row 35:   17: -0.332973   28: -0.287796   29: -0.564014   30: -0.598564   31: -0.649229   33: -0.372794   35: 3.47302   37: -0.667649   84: 0.0943089   85: 0.0971555   86: -0.135969   111: 0.0725036   113: -0.117127   114: 0.0925899   115: 0.0663671   116: -0.0448683   117: -0.0609153   118: 0.0767838   119: -0.0657345   123: -0.0937792   124: 0.0791278   127: -0.0604428
Row 36:   24: -0.548354   25: -0.871933   32: -0.927505   34: -0.710183   36: 3.68457   37: -0.626599   101: 0.118288   102: 0.129142   103: -0.156037   105: 0.127513   106: -0.100479   121: -0.105576   122: 0.131018   125: -0.117284   126: 0.108134   128: -0.134719
Row 37:   28: -0.509201   32: -0.369818   33: -0.732577   34: -0.628416   35: -0.667649   36: -0.626599   37: 3.53426   112: 0.0981016   113: 0.114391   114: -0.127626   120: 0.0932201   121: 0.0771011   122: -0.108685   123: 0.120485   124: -0.0916088   125: 0.0857449   126: -0.0791105   127: -0.123601   128: -0.0584127
Row 38:   0: -0.0833333   4: 0   19: 0.0833333   38: 0.0416667   39: 0   49: -0.0208333
Row 39:   0: -0.0833333   4: 0.0833333   19: 0   38: 0   39: 0.0416667   49: -0.0208333
Row 40:   1: -0.034013   7: -0.0837431   23: 0.117756   40: 0.0381352   42: -0.0209358   58: -0.00850325
Row 41:   1: -0.0342543   8: -0.0829256   23: 0.11718   41: 0.0380505   42: -0.0207314   60: -0.00856358
Row 42:   1: -0.0698066   7: 0.118528   8: 0.117948   23: -0.166669   40: -0.0209358   41: -0.0207314   42: 0.0761857   58: -0.00869614   60: -0.00875552
Row 43:   2: -0.0833333   11: 0   12: 0.0833333   43: 0.0416667   44: 1.73472e-18   68: -0.0208333
Row 44:   2: -0.0833333   11: 0.0833333   12: 0   43: 1.73472e-18   44: 0.0416667   68: -0.0208333
Row 45:   3: -0.020713   15: -0.0625066   30: 0.0832196   45: 0.0377773   47: -0.0156267   80: -0.00517824
Row 46:   3: 0.000151649   16: -0.111099   30: 0.110948   46: 0.0434229   47: -0.0277748   82: 3.79121e-05
Row 47:   3: -0.130634   15: 0.130396   16: 0.173843   30: -0.173606   45: -0.0156267   46: -0.0277748   47: 0.0812002   80: -0.0169724   82: -0.015686
Row 48:   4: -0.0553087   5: -0.0302454   20: 0.0855542   48: 0.0367928   50: -0.00756135   52: -0.0138272
Row 49:   0: 0.166667   4: -0.169926   19: -0.122284   20: 0.125543   38: -0.0208333   39: -0.0208333   49: 0.0801647   50: -0.00973772   89: -0.021648
Row 50:   4: -0.0900664   5: 0.0918626   19: 0.0674001   20: -0.0691963   48: -0.00756135   49: -0.00973772   50: 0.0752909   52: -0.0154043   89: -0.0071123
Row 51:   5: -0.0537908   6: -0.0387141   21: 0.0925049   51: 0.036266   53: -0.00967852   55: -0.0134477
Row 52:   4: 0.116926   5: -0.12557   20: -0.106394   21: 0.115038   48: -0.0138272   50: -0.0154043   52: 0.0735441   53: -0.0127714   91: -0.0159881
Row 53:   5: -0.0845258   6: 0.0912733   20: 0.0830523   21: -0.0897997   51: -0.00967852   52: -0.0127714   53: 0.0730172   55: -0.0131398   91: -0.00799166
Row 54:   6: -0.0577312   7: -0.0420473   22: 0.0997784   54: 0.0362622   56: -0.0105118   57: -0.0144328
Row 55:   5: 0.10635   6: -0.114421   21: -0.102651   22: 0.110723   51: -0.0134477   53: -0.0131398   55: 0.0728018   56: -0.0122151   94: -0.0154655
Row 56:   6: -0.0806907   7: 0.0873176   21: 0.0842808   22: -0.0909077   54: -0.0105118   55: -0.0122151   56: 0.0727979   57: -0.0113176   94: -0.00885509
Row 57:   6: 0.103002   7: -0.123185   22: -0.112022   23: 0.132205   54: -0.0144328   56: -0.0113176   57: 0.0744465   58: -0.0135726   97: -0.0194787
Row 58:   1: 0.0687976   7: -0.0553164   22: 0.0748223   23: -0.0883035   40: -0.00850325   42: -0.00869614   57: -0.0135726   58: 0.0763194   97: -0.00513297
Row 59:   8: -0.0322254   9: -0.0552752   24: 0.0875006   59: 0.036627   61: -0.0138188   63: -0.00805635
Row 60:   1: 0.0692764   8: -0.0463111   23: -0.0906718   24: 0.0677065   41: -0.00856358   42: -0.00875552   60: 0.0782672   61: -0.0141044   100: -0.00282225
Row 61:   8: -0.152168   9: 0.114283   23: 0.149578   24: -0.111693   59: -0.0138188   60: -0.0141044   61: 0.0768437   63: -0.0147518   100: -0.0232901
Row 62:   9: -0.0341102   10: -0.0686401   25: 0.10275   62: 0.0368873   64: -0.01716   66: -0.00852755
Row 63:   8: 0.0912327   9: -0.105026   24: -0.0791442   25: 0.0929375   59: -0.00805635   61: -0.0147518   63: 0.0727337   64: -0.0117297   101: -0.0115047
Row 64:   9: -0.0962885   10: 0.113439   24: 0.0984083   25: -0.115559   62: -0.01716   63: -0.0117297   64: 0.0729941   66: -0.0111998   101: -0.0128724
Row 65:   10: -0.0327251   11: -0.0698849   26: 0.10261   65: 0.037   67: -0.0174712   69: -0.00818128
Row 66:   9: 0.0789093   10: -0.0788029   25: -0.0779648   26: 0.0778583   62: -0.00852755   64: -0.0111998   66: 0.073862   67: -0.0109636   104: -0.00850094
Row 67:   10: -0.11543   11: 0.115275   25: 0.113895   26: -0.113739   65: -0.0174712   66: -0.0109636   67: 0.0739746   69: -0.0113475   104: -0.0175101
Row 68:   2: 0.166667   11: -0.194349   12: -0.119671   26: 0.147354   43: -0.0208333   44: -0.0208333   68: 0.0834428   69: -0.00908454   71: -0.0277539
Row 69:   10: 0.078115   11: -0.0651405   12: 0.0560888   26: -0.0690633   65: -0.00818128   67: -0.0113475   68: -0.00908454   69: 0.0787761   71: -0.00493766
Row 70:   12: -0.0411842   13: -0.0605924   27: 0.101777   70: 0.0363725   72: -0.0151481   74: -0.010296
Row 71:   11: 0.130766   12: -0.0913473   26: -0.196926   27: 0.157507   68: -0.0277539   69: -0.00493766   71: 0.0824124   72: -0.0214775   107: -0.0178992
Row 72:   12: -0.0487517   13: 0.104306   26: 0.0909485   27: -0.146503   70: -0.0151481   71: -0.0214775   72: 0.0770088   74: -0.0109283   107: -0.00125957
Row 73:   13: -0.0361696   14: -0.0404916   28: 0.0766612   73: 0.0370358   75: -0.0101229   77: -0.00904239
Row 74:   12: 0.0848976   13: -0.0587915   27: -0.105791   28: 0.0796851   70: -0.010296   72: -0.0109283   74: 0.0750247   75: -0.0161518   109: -0.00376953
Row 75:   13: -0.146405   14: 0.111973   27: 0.139531   28: -0.105099   73: -0.0101229   74: -0.0161518   75: 0.0756879   77: -0.0178705   109: -0.0187309
Row 76:   14: -0.0578574   15: -0.0447659   29: 0.102623   76: 0.0362636   78: -0.0111915   79: -0.0144643
Row 77:   13: 0.107651   14: -0.142183   28: -0.101966   29: 0.136498   73: -0.00904239   75: -0.0178705   77: 0.0753591   78: -0.0164492   111: -0.0176754
Row 78:   14: -0.0592263   15: 0.0871969   28: 0.082592   29: -0.110563   76: -0.0111915   77: -0.0164492   78: 0.0745869   79: -0.0106078   111: -0.00419882
Row 79:   14: 0.100288   15: -0.0755213   29: -0.13099   30: 0.106223   76: -0.0144643   78: -0.0106078   79: 0.0734678   80: -0.0182831   115: -0.00827257
Row 80:   3: 0.0886026   15: -0.110484   29: 0.115727   30: -0.0938455   45: -0.00517824   47: -0.0169724   79: -0.0182831   80: 0.0749815   115: -0.0106485
Row 81:   16: -0.110796   17: -0.000151649   30: 0.110948   81: 0.0433471   82: -3.79121e-05   84: -0.027699
Row 82:   3: 0.0625923   16: -0.125185   17: 0.0625923   30: 0   46: 3.79121e-05   47: -0.015686   81: -3.79121e-05   82: 0.08677   84: -0.0156102
Row 83:   17: -0.000386213   18: -0.0944124   31: 0.0947986   83: 0.0419172   85: -0.0236031   88: -9.65532e-05
Row 84:   16: 0.173237   17: -0.0860908   30: -0.181455   35: 0.0943089   81: -0.027699   82: -0.0156102   84: 0.0809032   86: -0.0176647   117: -0.00591256
Row 85:   17: -0.104715   18: 0.167282   31: -0.159723   35: 0.0971555   83: -0.0236031   85: 0.0787237   86: -0.0163275   88: -0.0182175   119: -0.00796132
Row 86:   17: -0.105986   30: 0.126574   31: 0.115381   35: -0.135969   84: -0.0176647   85: -0.0163275   86: 0.0743626   117: -0.0139789   119: -0.0125176
Row 87:   18: -0.0951848   19: 0.000386213   31: 0.0947986   87: 0.0421103   88: 9.65532e-05   90: -0.0237962
Row 88:   17: 0.0732563   18: -0.146513   19: 0.0732563   31: 0   83: -9.65532e-05   85: -0.0182175   87: 9.65532e-05   88: 0.0840274   90: -0.0184106
Row 89:   4: 0.115041   19: -0.0687899   20: -0.156773   31: 0.110522   49: -0.021648   50: -0.0071123   89: 0.0754328   90: -0.0175452   92: -0.0100852
Row 90:   18: 0.168827   19: -0.11086   20: 0.107398   31: -0.165366   87: -0.0237962   88: -0.0184106   89: -0.0175452   90: 0.079045   92: -0.00930429
Row 91:   5: 0.0959192   20: -0.0811964   21: -0.106796   33: 0.092073   52: -0.0159881   53: -0.00799166   91: 0.0728984   93: -0.0107108   96: -0.0123074
Row 92:   19: 0.0775578   20: -0.0858253   31: -0.0968204   33: 0.105088   89: -0.0100852   90: -0.00930429   92: 0.0731961   93: -0.0141199   118: -0.012152
Row 93:   20: -0.0924734   21: 0.095359   31: 0.0964375   33: -0.099323   91: -0.0107108   92: -0.0141199   93: 0.0724086   96: -0.0131289   118: -0.00998942
Row 94:   6: 0.0972825   21: -0.0895218   22: -0.10743   32: 0.0996696   55: -0.0154655   56: -0.00885509   94: 0.0726881   95: -0.011392   99: -0.0135254
Row 95:   21: -0.0779072   22: 0.090508   32: -0.0955243   33: 0.0829234   94: -0.011392   95: 0.0728544   96: -0.012489   99: -0.011235   120: -0.00824182
Row 96:   20: 0.101746   21: -0.1164   32: 0.113841   33: -0.0991859   91: -0.0123074   93: -0.0131289   95: -0.012489   96: 0.0728492   120: -0.0159711
Row 97:   7: 0.0984466   22: -0.055892   23: -0.125663   24: 0.0831084   57: -0.0194787   58: -0.00513297   97: 0.0747722   98: -0.0119371   100: -0.00884002
Row 98:   22: -0.119863   23: 0.110992   24: -0.0824026   32: 0.0912736   97: -0.0119371   98: 0.0730531   99: -0.00866359   100: -0.0158109   102: -0.0141548
Row 99:   21: 0.0990414   22: -0.0995268   24: 0.0892412   32: -0.0887558   94: -0.0135254   95: -0.011235   98: -0.00866359   99: 0.0726175   102: -0.0136467
Row 100:   8: 0.104449   22: 0.0986036   23: -0.156404   24: -0.0466491   60: -0.00282225   61: -0.0232901   97: -0.00884002   98: -0.0158109   100: 0.0768046
Row 101:   9: 0.0975081   24: -0.0934947   25: -0.122301   36: 0.118288   63: -0.0115047   64: -0.0128724   101: 0.0735835   103: -0.0190706   106: -0.0105013
Row 102:   22: 0.111206   24: -0.103974   32: -0.136374   36: 0.129142   98: -0.0141548   99: -0.0136467   102: 0.074569   103: -0.0199387   121: -0.0123468
Row 103:   24: -0.0548927   25: 0.107902   32: 0.103028   36: -0.156037   101: -0.0190706   102: -0.0199387   103: 0.0755806   106: -0.00790481   121: -0.00581837
Row 104:   10: 0.104044   25: -0.110436   26: -0.0945973   34: 0.100989   66: -0.00850094   67: -0.0175101   104: 0.0733537   105: -0.0151484   108: -0.0100989
Row 105:   25: -0.113567   26: 0.105121   34: -0.119067   36: 0.127513   104: -0.0151484   105: 0.0739576   106: -0.0146185   108: -0.0111318   125: -0.0172599
Row 106:   24: 0.0736245   25: -0.0544203   34: 0.0812748   36: -0.100479   101: -0.0105013   103: -0.00790481   105: -0.0146185   106: 0.0750554   125: -0.00570025
Row 107:   12: 0.0766349   26: -0.0517256   27: -0.122692   34: 0.0977827   71: -0.0178992   72: -0.00125957   107: 0.0767377   108: -0.0127739   110: -0.0116718
Row 108:   25: 0.0849225   26: -0.0911502   27: 0.0977186   34: -0.0914909   104: -0.0100989   105: -0.0111318   107: -0.0127739   108: 0.0724805   110: -0.0116558
Row 109:   13: 0.0900017   27: -0.140104   28: -0.0443342   34: 0.0944361   74: -0.00376953   75: -0.0187309   109: 0.075597   110: -0.00731402   112: -0.016295
Row 110:   26: 0.0933104   27: -0.0999664   28: 0.0825994   34: -0.0759434   107: -0.0116718   108: -0.0116558   109: -0.00731402   110: 0.0730463   112: -0.0133358
Row 111:   14: 0.0874967   28: -0.0325616   29: -0.127439   35: 0.0725036   77: -0.0176754   78: -0.00419882   111: 0.07731   113: -0.0141843   116: -0.00394157
Row 112:   27: 0.118523   28: -0.0842096   34: -0.132415   37: 0.0981016   109: -0.016295   110: -0.0133358   112: 0.0738787   114: -0.0168088   126: -0.00771657
Row 113:   28: -0.137443   29: 0.14018   35: -0.117127   37: 0.114391   111: -0.0141843   113: 0.0756342   114: -0.0150976   116: -0.0208607   127: -0.0135001
Row 114:   28: -0.0818333   34: 0.116869   35: 0.0925899   37: -0.127626   112: -0.0168088   113: -0.0150976   114: 0.0735814   126: -0.0124084   127: -0.00804992
Row 115:   15: 0.0756844   29: -0.0798592   30: -0.0621923   35: 0.0663671   79: -0.00827257   80: -0.0106485   115: 0.07587   116: -0.00727552   117: -0.00931627
Row 116:   28: 0.0992092   29: -0.171739   30: 0.117398   35: -0.0448683   111: -0.00394157   113: -0.0208607   115: -0.00727552   116: 0.0776524   117: -0.022074
Row 117:   17: 0.0795659   29: 0.125561   30: -0.144212   35: -0.0609153   84: -0.00591256   86: -0.0139789   115: -0.00931627   116: -0.022074   117: 0.0762219
Row 118:   20: 0.0885658   31: -0.0828523   33: -0.0824973   35: 0.0767838   92: -0.012152   93: -0.00998942   118: 0.0733347   119: -0.0084723   123: -0.0107237
Row 119:   17: 0.0819158   31: -0.12158   33: 0.105399   35: -0.0657345   85: -0.00796132   86: -0.0125176   118: -0.0084723   119: 0.0738798   123: -0.0178774
Row 120:   21: 0.0968518   32: -0.104609   33: -0.0854633   37: 0.0932201   95: -0.00824182   96: -0.0159711   120: 0.0728975   122: -0.013124   124: -0.010181
Row 121:   24: 0.0726606   32: -0.0441856   36: -0.105576   37: 0.0771011   102: -0.0123468   103: -0.00581837   121: 0.0760864   122: -0.0140472   128: -0.00522804
Row 122:   32: -0.126391   33: 0.104058   36: 0.131018   37: -0.108685   120: -0.013124   121: -0.0140472   122: 0.074178   124: -0.0128904   128: -0.0187073
Row 123:   31: 0.114404   33: -0.14111   35: -0.0937792   37: 0.120485   118: -0.0107237   119: -0.0178774   123: 0.0742553   124: -0.0127212   127: -0.0174
Row 124:   32: 0.0922859   33: -0.0798048   35: 0.0791278   37: -0.0916088   120: -0.010181   122: -0.0128904   123: -0.0127212   124: 0.0733774   127: -0.00706078
Row 125:   25: 0.0918406   34: -0.0603016   36: -0.117284   37: 0.0857449   105: -0.0172599   106: -0.00570025   125: 0.0739873   126: -0.0120611   128: -0.00937515
Row 126:   28: 0.0804999   34: -0.109524   36: 0.108134   37: -0.0791105   112: -0.00771657   114: -0.0124084   125: -0.0120611   126: 0.0733425   128: -0.0149725
Row 127:   28: 0.0862002   33: 0.0978433   35: -0.0604428   37: -0.123601   113: -0.0135001   114: -0.00804992   123: -0.0174   124: -0.00706078   127: 0.0738296
Row 128:   32: 0.0957414   34: 0.0973906   36: -0.134719   37: -0.0584127   121: -0.00522804   122: -0.0187073   125: -0.00937515   126: -0.0149725   128: 0.0743913

6. Solve the system:

[10]:
gfu.vec.data = \
    a.mat.Inverse(freedofs=fes.FreeDofs()) * f.vec
Draw(gfu)
call pardiso ... done
[10]:
BaseWebGuiScene

The Dirichlet boundary condition constrains some degrees of freedom. The argument fes.FreeDofs() indicates that only the remaining “free” degrees of freedom should participate in the linear solve.

You can examine the coefficient vector of solution if needed:

[11]:
print(gfu.vec)
       0
       0
       0
 0.0923051
       0
       0
       0
       0
       0
       0
       0
       0
 0.0578976
 0.0863397
 0.095413
 0.0944941
 0.088859
 0.0779511
 0.059639
 0.0330669
 0.0361131
 0.0364559
 0.0317036
 0.0185143
 0.0384776
 0.0431703
 0.0476901
 0.0763835
 0.0896404
 0.0935756
 0.0902834
 0.0619423
 0.05721
 0.0634411
 0.072785
 0.0832449
 0.0629249
 0.0775277
       0
 -0.00576212
       0
       0
 0.0208108
       0
 -0.0350834
 0.00265432
 -0.00721308
 -0.00488766
       0
 -0.00992425
 -0.00630809
       0
 -0.0163826
 -0.0115972
       0
 -0.0146117
 -0.019397
 -0.00629918
 -0.021289
       0
 -0.0255422
 -0.00978494
       0
 -0.0385158
 -0.0136376
       0
 -0.026807
 -0.018579
 -0.0333669
 -0.024961
 -0.0242793
 -0.00449407
 -0.0124615
 -0.0145086
 -0.00594865
 -0.0117808
 -0.00555001
 -0.00890522
 -0.00588952
 -0.00539555
 -0.00706629
 -0.00787172
 0.0025744
 -0.00832323
 -0.00587822
 -0.00475479
 0.00342728
 -0.00825162
 0.00390131
 0.00421041
 -0.00475943
 -0.00353907
 -0.00993744
 -0.009953
 -0.00708995
 -0.0135307
 -0.0114551
 -0.0078331
 -0.0254921
 -0.0071086
 -0.00325064
 -0.0089176
 -0.0210183
 -0.00522333
 -0.0030572
 -0.0144307
 -0.0182813
 -0.0155115
 -0.0215164
 -0.0172692
 -0.00414894
 -0.00783019
 -0.0132532
 -0.016378
 -0.00903592
 -0.00194529
 -0.00888682
 -0.00574139
 -0.00227548
 -0.0105216
 -0.00871044
 -0.0118078
 -0.00808258
 -0.0113092
 -0.0118318
 -0.00416845
 -0.0163461
 -0.00951852
 -0.0109196


Ways to interact with NGSolve

  • A jupyter notebook (like this one) gives you one way to interact with NGSolve. When you have a complex sequence of tasks to perform, the notebook may not be adequate.

  • You can write an entire python module in a text editor and call python on the command line. (A script of the above is provided in poisson.py.) python3 poisson.py

  • If you want the Netgen GUI, then use netgen on the command line: netgen poisson.py You can then ask for a python shell from the GUI’s menu options (Solve -> Python shell).

[ ]: