This page was generated from wta/maxwell.ipynb.
Maxwell Equations¶
[1]:
from netgen.csg import *
from ngsolve import *
from ngsolve.webgui import Draw
Geometric model using Netgen constructive solid geometry:
[2]:
def MakeGeometry():
geometry = CSGeometry()
box = OrthoBrick(Pnt(-1,-1,-1),Pnt(2,1,2)).bc("outer")
core = OrthoBrick(Pnt(0,-0.05,0),Pnt(0.8,0.05,1))- \
OrthoBrick(Pnt(0.1,-1,0.1),Pnt(0.7,1,0.9))- \
OrthoBrick(Pnt(0.5,-1,0.4),Pnt(1,1,0.6)).maxh(0.2).mat("core")
coil = (Cylinder(Pnt(0.05,0,0), Pnt(0.05,0,1), 0.3) - \
Cylinder(Pnt(0.05,0,0), Pnt(0.05,0,1), 0.15)) * \
OrthoBrick (Pnt(-1,-1,0.3),Pnt(1,1,0.7)).maxh(0.2).mat("coil")
geometry.Add ((box-core-coil).mat("air"), transparent=True)
geometry.Add (core, col=(0.5,0.5,0))
geometry.Add (coil, col=(0,1,0))
return geometry
geo = MakeGeometry()
# Draw (geo)
[3]:
mesh = Mesh(geo.GenerateMesh(maxh=0.5))
mesh.Curve(5)
Draw (mesh, clipping = { "pnt" : (0,0,0), "vec" : (0,1,0) })
[3]:
Magnetostatics:
find \(u \in H(curl)\) such that
\[\int \mu^{-1} \operatorname{curl} u \operatorname{curl} v = \int j v\]
for all \(v \in H(curl)\).
[4]:
fes = HCurl(mesh, order=4, dirichlet="outer", nograds = True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()
mur = { "core" : 1000, "coil" : 1, "air" : 1 }
mu0 = 1.257e-6
nu_coef = [ 1/(mu0*mur[mat]) for mat in mesh.GetMaterials() ]
nu = CoefficientFunction(nu_coef)
a = BilinearForm(fes, symmetric=True)
a += nu*curl(u)*curl(v)*dx + 1e-6*nu*u*v*dx
c = Preconditioner(a, type="bddc")
f = LinearForm(fes)
f += CoefficientFunction((y,0.05-x,0)) * v * dx("coil")
u = GridFunction(fes)
ndof = 182182
Distribute work by task-parallelization:
[5]:
with TaskManager():
a.Assemble()
f.Assemble()
solver = CGSolver(mat=a.mat, pre=c.mat)
u.vec.data = solver * f.vec
[6]:
Draw (curl(u), mesh, "B-field", draw_surf=False, \
clipping = { "pnt" : (0,0,0), "vec" : (0,1,0), "function" : False },
vectors = { "grid_size" : 100 })
[6]:
[ ]: