This page was generated from jupyter-files/unit-2.7-hybrid/hybrid.ipynb.
2.7 Facet spaces and hybrid methods¶
Mixed methods for second order problems lead to saddle point problems, and indefinite matrices. By hybridization one obtains a positive definite system again. It’s structure is similar to the non-conforming \(P^1\) method, but hybridization works for any order. See text-book by Brezzi and Fortin.
One skips the normal-continuity of the \(H(div)\) variable, and reinforces it by a Lagrange parameter. This leads to the following discrete system:
Find \(\sigma, u, \widehat u \in \Sigma_h \times V_h \times F_h\):
where \(\Sigma_h\) is an discontinuous \(H(div)\) finite element space, \(V_h\) a sub-space of \(L_2\), and \(F_h\) consists of polynomials on every edge.
[1]:
from netgen.geom2d import unit_square
from ngsolve import *
import netgen.gui
%gui tk
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
same example as in ‘mixed’:
[2]:
source = sin(3.14*x)
ud = CoefficientFunction(5)
g = CoefficientFunction([y*(1-y) if bc=="left" else 0 for bc in mesh.GetBoundaries()])
lam = 10
define spaces:
The discontinuous flag generates an element-wise \(H(Div)\)-space
FacetFESpace lives only on facets (i.e. faces in 3D, edges in 2D, points in 1D)
Boundary conditions are now posed for the facet-space
[3]:
order = 3
V = HDiv(mesh, order=order, discontinuous=True)
Q = L2(mesh, order=order-1)
F = FacetFESpace(mesh, order=order, dirichlet="bottom")
X = FESpace([V,Q,F])
print ("sigmadofs:", X.Range(0))
print ("udofs: ", X.Range(1))
print ("uhatdofs: ", X.Range(2))
sigmadofs: slice(0, 1120, 1)
udofs: slice(1120, 1456, 1)
uhatdofs: slice(1456, 1832, 1)
Assemble forms. The jump-term is rewritten as
[4]:
sigma,u,uhat = X.TrialFunction()
tau,v,vhat = X.TestFunction()
condense=True
a = BilinearForm(X, eliminate_internal=condense)
a += SymbolicBFI(1/lam * sigma*tau + div(sigma)*v + div(tau)*u)
n = specialcf.normal(mesh.dim)
a += SymbolicBFI(-sigma*n*vhat-tau*n*uhat, element_boundary=True)
c = Preconditioner(a, "bddc")
f = LinearForm(X)
f += SymbolicLFI(-source*v)
f += SymbolicLFI(-g*vhat.Trace(), BND)
a.Assemble()
print ("A non-zero", a.mat.nze)
gfu = GridFunction(X)
A non-zero 6880
Solve system. Either we leave everything to the sparse direct solver, or use CG
[5]:
f.Assemble()
gfu.components[2].Set(ud, BND)
if condense:
f.vec.data += a.harmonic_extension_trans * f.vec
solvers.CG(mat=a.mat, pre=c.mat, rhs=f.vec, sol=gfu.vec, initialize=False)
gfu.vec.data += a.harmonic_extension * gfu.vec
gfu.vec.data += a.inner_solve * f.vec
else:
r = f.vec.CreateVector()
r.data = f.vec - a.mat * gfu.vec
inv = a.mat.Inverse(freedofs=X.FreeDofs())
gfu.vec.data += inv * r
it = 0 err = 136.8703468856364
it = 1 err = 60.58702491012707
it = 2 err = 24.172480309852325
it = 3 err = 12.551902691915576
it = 4 err = 4.6561221507187
it = 5 err = 1.6707046939551382
it = 6 err = 0.6483905966924745
it = 7 err = 0.25370556589294635
it = 8 err = 0.10118909278378112
it = 9 err = 0.0362644711098403
it = 10 err = 0.021422651202624675
it = 11 err = 0.007698393630516215
it = 12 err = 0.003262626544392722
it = 13 err = 0.0012157696030631927
it = 14 err = 0.0005171305441789332
it = 15 err = 0.00018478710262344629
it = 16 err = 6.140422208014876e-05
it = 17 err = 2.3634731562752536e-05
it = 18 err = 8.96567905629904e-06
it = 19 err = 4.210915291606238e-06
it = 20 err = 1.09563838139071e-06
it = 21 err = 5.00341691606555e-07
it = 22 err = 1.917170519922857e-07
it = 23 err = 8.852599023217076e-08
it = 24 err = 3.7509955514489134e-08
it = 25 err = 1.2734631340019504e-08
it = 26 err = 3.9327806777442605e-09
it = 27 err = 1.5953738573307435e-09
it = 28 err = 7.259436128069845e-10
it = 29 err = 2.6189206224604935e-10
[6]:
Draw (gfu.components[0], mesh, "sigma")
Draw (gfu.components[1], mesh, "u")
[ ]: