Navier Stokes Equation¶
We solve the time-dependent incompressible Navier Stokes Equation. For that
we use the P3/P2 Taylor-Hood mixed finite element pairing
and perform operator splitting time-integration with the non-linear term explicit, but time-dependent Stokes fully implicit.
The example is from the Schäfer-Turek benchmark <http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf> a two-dimensional cylinder, at Reynolds number 100
Download navierstokes.py
from ngsolve import *
# viscosity
nu = 0.001
# timestepping parameters
tau = 0.001
tend = 10
from netgen.geom2d import SplineGeometry
geo = SplineGeometry()
geo.AddRectangle( (0, 0), (2, 0.41), bcs = ("wall", "outlet", "wall", "inlet"))
geo.AddCircle ( (0.2, 0.2), r=0.05, leftdomain=0, rightdomain=1, bc="cyl", maxh=0.02)
mesh = Mesh( geo.GenerateMesh(maxh=0.07))
mesh.Curve(3)
V = VectorH1(mesh,order=3, dirichlet="wall|cyl|inlet")
Q = H1(mesh,order=2)
X = FESpace([V,Q])
u,p = X.TrialFunction()
v,q = X.TestFunction()
stokes = nu*InnerProduct(grad(u), grad(v))+div(u)*q+div(v)*p - 1e-10*p*q
a = BilinearForm(X)
a += SymbolicBFI(stokes)
a.Assemble()
# nothing here ...
f = LinearForm(X)
f.Assemble()
# gridfunction for the solution
gfu = GridFunction(X)
# parabolic inflow at inlet:
uin = CoefficientFunction( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.components[0].Set(uin, definedon=mesh.Boundaries("inlet"))
# solve Stokes problem for initial conditions:
inv_stokes = a.mat.Inverse(X.FreeDofs())
res = f.vec.CreateVector()
res.data = f.vec - a.mat*gfu.vec
gfu.vec.data += inv_stokes * res
# matrix for implicit Euler
mstar = BilinearForm(X)
mstar += SymbolicBFI(u*v + tau*stokes)
mstar.Assemble()
inv = mstar.mat.Inverse(X.FreeDofs(), inverse="sparsecholesky")
# the non-linear term
conv = BilinearForm(X, nonassemble = True)
conv += SymbolicBFI( (grad(u) * u) * v)
# for visualization
Draw (Norm(gfu.components[0]), mesh, "velocity", sd=3)
# implicit Euler/explicit Euler splitting method:
t = 0
with TaskManager():
while t < tend:
print ("t=", t, end="\r")
conv.Apply (gfu.vec, res)
res.data += a.mat*gfu.vec
gfu.vec.data -= tau * inv * res
t = t + tau
Redraw()
The absolute value of velocity: