This page was generated from jupyter-files/unit-1.7-helmholtz/helmholtz.ipynb.
1.7 Complex-valued waves¶
In NGSolve finite element spaces can be built and linear systems can be solved over the complex field. This tutorial shows how to compute the solution of the Helmholtz equation with impedance boundary conditions in complex arithmetic. The boundary value problem is to find \(u\) satisfying
\[-\Delta u - \omega^2 u = f\qquad \text{ in } \Omega\]
together with the impedance (outgoing) boundary condition
\[\frac{\partial u }{ \partial n} - i \omega u = 0
\quad \text{ on } \partial \Omega\]
where \(i =\) 1j
is the imaginary unit.
In [1]:
import netgen.gui
%gui tk
from ngsolve import *
from netgen.geom2d import SplineGeometry
In [2]:
# Geometry
geo = SplineGeometry()
geo.AddCircle((0.5, 0.5), 0.8, bc="outer")
geo.AddRectangle((0.7, 0.3), (0.75, 0.7),
leftdomain=0, rightdomain=1, bc="scat")
mesh = Mesh(geo.GenerateMesh(maxh=0.05))
Declare a complex finite element space¶
In [3]:
fes = H1(mesh, order=5, complex=True)
u, v = fes.TnT()
In [4]:
# Wavenumber & source
omega = 100
pulse = 1e3*exp(-(100**2)*((x-0.5)*(x-0.5) + (y-0.5)*(y-0.5)))
Draw(pulse, mesh, 'pulse')
Forming the system¶
The weak form for \(u \in H^1\):
\[\int_\Omega\big[ \nabla u \cdot \nabla \bar v - \omega^2 u \bar v \big]
\, dx -
i \,\omega\, \int_{\partial \Omega} u \bar v \, ds = \int_{\Omega} f \bar v\]
for all \(v\) in \(H^1\).
In [5]:
# Forms
a = BilinearForm(fes)
a += SymbolicBFI(grad(u)*grad(v)-omega**2*u*v)
a += SymbolicBFI(-omega*1j*u*v, definedon=mesh.Boundaries("outer"))
a.Assemble()
f = LinearForm(fes)
f += SymbolicLFI(pulse * v)
f.Assemble()
Solve¶
In [6]:
gfu = GridFunction(fes, name="u")
gfu.vec.data = a.mat.Inverse() * f.vec
Draw(gfu)
Explore the GUI’s menu options in Visual
tab:
- Increase subdivions
- Real and imaginary parts
- View absolute value
- Turn off Autoscale
- Turn on Deformation
- Turn on Periodic Animation