This page was generated from jupyter-files/unit-2.4-Maxwell/Maxwell.ipynb.
2.4 Maxwell’s Equations¶
[Peter Monk: “Finite Elements for Maxwell’s Equations”]
Magnetostatic field generated by a permanent magnet¶
magnetic flux \(B\), magnetic field \(H\), given magnetization \(M\):
\[\DeclareMathOperator{\Grad}{grad}
\DeclareMathOperator{\Curl}{curl}
\DeclareMathOperator{\Div}{div}
B = \mu (H + M), \quad \Div B = 0, \quad \Curl H = 0\]
Introducing a vector-potential \(A\) such that \(B = \Curl A\), and putting equations together we get
\[\Curl \mu^{-1} \Curl A = \Curl M\]
In weak form: Find \(A \in H(\Curl)\) such that
\[\int \mu^{-1} \Curl A \Curl v = \int M \Curl v \qquad \forall \, v \in H(\Curl)\]
Usually, the permeability \(\mu\) is given as \(\mu = \mu_r \mu_0\), with \(\mu_0 = 4 \pi 10^{-7}\) the permeability of vacuum.
In [1]:
from ngsolve import *
from netgen.csg import *
import netgen.gui
%gui tk
Geometric model and meshing of a bar magnet:
In [2]:
box = OrthoBrick(Pnt(-3,-3,-3),Pnt(3,3,3)).bc("outer")
magnet = Cylinder(Pnt(-1,0,0),Pnt(1,0,0), 0.3) * OrthoBrick(Pnt(-1,-3,-3),Pnt(1,3,3))
air = box - magnet
geo = CSGeometry()
geo.Add (air.mat("air").transp())
geo.Add (magnet.mat("magnet").maxh(1))
geo.Draw()
mesh = Mesh(geo.GenerateMesh(maxh=2, curvaturesafety=1))
mesh.Curve(3)
In [3]:
mesh.GetMaterials(), mesh.GetBoundaries()
Out[3]:
(('air', 'magnet'),
('outer',
'outer',
'outer',
'outer',
'outer',
'outer',
'default',
'default',
'default'))
Define space, forms and preconditioner.
- To obtain a regular system matrix, we regularize by adding a very small \(L_2\) term.
- We solve magnetostatics, so we can gauge by adding and arbitrary gradient field. A cheap possibility is to delete all basis-functions which are gradients (flag ‘nograds’)
In [4]:
fes = HCurl(mesh, order=3, dirichlet="outer", nograds=True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()
from math import pi
mu0 = 4*pi*1e-7
mur = CoefficientFunction( [1000 if mat== "magnet" else 1
for mat in mesh.GetMaterials()])
a = BilinearForm(fes)
a += SymbolicBFI(1/(mu0*mur) * curl(u) * curl(v) + 1e-8/(mu0*mur)*u*v)
c = Preconditioner(a, "bddc")
f = LinearForm(fes)
mag = CoefficientFunction((1,0,0)) * \
CoefficientFunction( [1 if mat == "magnet" else 0 for mat in mesh.GetMaterials()])
f += SymbolicLFI(mag*curl(v), definedon=mesh.Materials("magnet"))
ndof = 21439
Assemble system and setup preconditioner using task-parallelization:
In [5]:
with TaskManager():
a.Assemble()
f.Assemble()
Finally, declare GridFunction and solve by preconditioned CG iteration:
In [6]:
gfu = GridFunction(fes)
with TaskManager():
solvers.CG(sol=gfu.vec, rhs=f.vec, mat=a.mat, pre=c.mat)
it = 0 err = 0.004834556218517527
it = 1 err = 0.0028938795257410117
it = 2 err = 0.0018764053599106428
it = 3 err = 0.0012167024420446035
it = 4 err = 0.0008154078108554166
it = 5 err = 0.0005512980608231248
it = 6 err = 0.0003783687160655943
it = 7 err = 0.00024850704793636
it = 8 err = 0.00014751591939837823
it = 9 err = 0.00010046059754497959
it = 10 err = 6.0599386314131916e-05
it = 11 err = 3.7306746707688986e-05
it = 12 err = 2.2865488298664312e-05
it = 13 err = 1.3402569890317977e-05
it = 14 err = 8.744091600065984e-06
it = 15 err = 5.5933636969128035e-06
it = 16 err = 3.192193939595891e-06
it = 17 err = 1.911582068812383e-06
it = 18 err = 1.1537923931961965e-06
it = 19 err = 6.66288841368631e-07
it = 20 err = 4.1644321801017405e-07
it = 21 err = 2.7183534856130845e-07
it = 22 err = 1.6639462226981296e-07
it = 23 err = 1.023184651335171e-07
it = 24 err = 5.894888743781949e-08
it = 25 err = 3.5542134277234365e-08
it = 26 err = 2.1714186678656858e-08
it = 27 err = 1.3111960150866855e-08
it = 28 err = 7.622354075626605e-09
it = 29 err = 4.451915516950855e-09
it = 30 err = 2.5667653447970765e-09
it = 31 err = 1.5254455666689282e-09
it = 32 err = 9.506467120575732e-10
it = 33 err = 5.620910321157875e-10
it = 34 err = 3.4593450793876496e-10
it = 35 err = 1.9766816375141168e-10
it = 36 err = 1.174537677413651e-10
it = 37 err = 7.079331072431792e-11
it = 38 err = 4.15449701360247e-11
it = 39 err = 2.4756971398668627e-11
it = 40 err = 1.5341064928142025e-11
it = 41 err = 9.156455648648875e-12
it = 42 err = 5.280191027621488e-12
it = 43 err = 3.2879905796687907e-12
it = 44 err = 1.937322886980886e-12
it = 45 err = 1.1575787499694853e-12
it = 46 err = 6.775420772822517e-13
it = 47 err = 4.017300590188354e-13
it = 48 err = 2.740211128678103e-13
it = 49 err = 1.864275852353925e-13
it = 50 err = 1.063271698211812e-13
it = 51 err = 6.335621398663346e-14
it = 52 err = 3.7404270848382554e-14
it = 53 err = 2.3138588501848596e-14
it = 54 err = 1.4444778054166232e-14
it = 55 err = 9.297641777021612e-15
it = 56 err = 6.14275145884241e-15
In [7]:
# the vector potential is not supposed to look nice
Draw (gfu, mesh, "vector-potential", draw_surf=False)
Draw (curl(gfu), mesh, "B-field", draw_surf=False)
Draw (1/(mu0*mur)*curl(gfu)-mag, mesh, "H-field", draw_surf=False)