This page was generated from unit-1.5-subdomains/subdomains.ipynb.
1.5 Spaces and forms on subdomains¶
In NGSolve, finite element spaces can be defined on subdomains. This is useful for multiphysics problems like fluid-structure interaction.
In addition, bilinear or linear forms can be defined as integrals over regions. Regions are parts of the domain. They may be subdomains, or parts of the domain boundary, or parts of subdomain interfaces.
In this tutorial, you will learn about
defining finite element spaces on
Region
s,Compress
ing such spaces,integrating on
Regions
s, andset operations on
Region
objects viaMask
.
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import * # Opencascade for geometry modeling
Naming subdomains and boundaries¶
We define a geometry with multiple regions and assign names to these regions below:
[2]:
outer = Rectangle(2, 2).Face()
outer.edges.name="outer"
outer.edges.Max(X).name = "r"
outer.edges.Min(X).name = "l"
outer.edges.Min(Y).name = "b"
outer.edges.Max(Y).name = "t"
inner = MoveTo(1, 0.9).Rectangle(0.3, 0.5).Face()
inner.edges.name="interface"
outer = outer - inner
inner.faces.name="inner"
inner.faces.col = (1, 0, 0)
outer.faces.name="outer"
geo = Glue([inner, outer])
Draw(geo);
[3]:
mesh = Mesh(OCCGeometry(geo, dim=2).GenerateMesh(maxh=0.2))
Draw(mesh);
This mesh has two subdomains that we named "inner" and "outer" during the geometry construction. They can be identified as Region
objects.
[4]:
mesh.Materials("inner")
[4]:
<ngsolve.comp.Region at 0x7f1042382170>
The bottom, right, top and left parts of the outer rectangle’s boundaries define boundary segments, which we respectively labeled "b", "r", "t", "l". They are also instances of Region
objects:
[5]:
mesh.Boundaries("b")
[5]:
<ngsolve.comp.Region at 0x7f1042381c30>
A finite element space on a subdomain¶
[6]:
fes1 = H1(mesh, definedon="inner")
u1 = GridFunction(fes1, "u1")
u1.Set(x*y)
Draw(u1)
[6]:
BaseWebGuiScene
Note how \(u_1\) is displayed only in the inner
region.
Do not be confused with ndof
for spaces on subdomains:
[7]:
fes = H1(mesh)
fes1.ndof, fes.ndof
[7]:
(132, 132)
Although ndof
s are the same for spaces on one subdomain and the whole domain, FreeDofs
show that the real number of degrees of freedom for the subdomain space is much smaller:
[8]:
print(fes1.FreeDofs())
0: 11110000111110000000000000000000000000000000000001
50: 10000000000000000000000000000000000000000000000000
100: 00000000000000000000000000000000
One can also glean this information by examining CouplingType
of each degrees of freedom of the space, which reveals that there are many unknowns of type COUPLING_TYPE.UNUSED_DOF
.
[9]:
for i in range(fes1.ndof):
print(fes1.CouplingType(i))
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
COUPLING_TYPE.UNUSED_DOF
It is possible to remove these dofs (thus making GridFunction
vectors smaller) as follows.
[10]:
fescomp = Compress(fes1)
print(fescomp.ndof)
11
Integrating on regions¶
You have already seen how boundary regions are used in setting Dirichlet boundary conditions.
[11]:
fes = H1(mesh, order=3, dirichlet="b|l|r")
u, v = fes.TnT()
gfu = GridFunction(fes)
Such boundary regions or subdomains can also serve as domains of integration.
[12]:
term1 = u1 * v * dx(definedon=mesh.Materials("inner"))
term2 = 0.1 * v * ds(definedon=mesh.Boundaries("t"))
f = LinearForm(term1 + term2).Assemble()
Here the functional \(f\) is defined as a sum of two integrals, one over the inner subdomain, and another over the top boundary:
The python objects dx
and ds
represent volume and boundary integration, respectively. They admit a keyword argument definedon
that is either a Region
or a str
, as can be seen from the documentation: look for definedon: Optional[Union[ngsolve.comp.Region, str]]
in the help output below.
[13]:
help(dx)
Help on DifferentialSymbol in module ngsolve.comp object:
class DifferentialSymbol(pybind11_builtins.pybind11_object)
| Method resolution order:
| DifferentialSymbol
| pybind11_builtins.pybind11_object
| builtins.object
|
| Methods defined here:
|
| __call__(...)
| __call__(self: ngsolve.comp.DifferentialSymbol, definedon: Optional[Union[ngsolve.comp.Region, str]] = None, element_boundary: bool = False, element_vb: ngsolve.comp.VorB = <VorB.VOL: 0>, skeleton: bool = False, bonus_intorder: int = 0, intrules: Dict[ngsolve.fem.ET, ngsolve.fem.IntegrationRule] = {}, deformation: ngsolve.comp.GridFunction = None, definedonelements: pyngcore.pyngcore.BitArray = None) -> ngsolve.comp.DifferentialSymbol
|
| __init__(...)
| __init__(self: ngsolve.comp.DifferentialSymbol, arg0: ngsolve.comp.VorB) -> None
|
| ----------------------------------------------------------------------
| Static methods inherited from pybind11_builtins.pybind11_object:
|
| __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
| Create and return a new object. See help(type) for accurate signature.
Thus - dx(definedon=mesh.Materials("inner"))
may be replaced by dx('inner')
,
and similarly,
ds(definedon=mesh.Boundaries("t")
may be replaced byds('t')
.
[14]:
f = LinearForm(u1*v*dx('inner') + 0.1*v*ds('t')).Assemble()
[15]:
a = BilinearForm(fes)
a += grad(u)*grad(v)*dx
a.Assemble()
gfu.vec.data = a.mat.Inverse(fes.FreeDofs()) * f.vec
Draw(gfu);
Operations with Region
s¶
Query mesh for all regions:
[16]:
mesh.GetBoundaries() # list boundary/interface regions
[16]:
('interface', 'interface', 'interface', 'interface', 'b', 'l', 'r', 't')
[17]:
mesh.GetMaterials() # list all subdomains
[17]:
('inner', 'outer')
Print region information:
[18]:
print(mesh.Materials("inner").Mask())
print(mesh.Materials("[a-z]*").Mask()) # can use regexp
print(mesh.Boundaries('t|l').Mask())
0: 10
0: 11
0: 00000101
Add regions:
[19]:
io = mesh.Materials("inner") + mesh.Materials("outer")
print(io.Mask())
0: 11
Take complement of a region:
[20]:
c = ~mesh.Materials("inner")
print(c.Mask())
0: 01
Subtract regions:
[21]:
diff = mesh.Materials("inner|outer") - mesh.Materials("outer")
print(diff.Mask())
0: 10
Set a piecewise constant CoefficientFunction
using the subdomains:
[22]:
domain_values = {'inner': 3.7, 'outer': 1}
cf = mesh.MaterialCF(domain_values)
Draw(cf, mesh);
Use boundary regions to define a coefficient function:
[23]:
# Make a linear function equaling 2 at the bottom right vertex
# of (0,2) x (0,2) and equals zero at the remaining vertices:
bdry_values = {'b': x, 'r': 2-y}
cf = mesh.BoundaryCF(bdry_values, default=0)
Draw
ing such a BoundaryCF
does not show anything useful. However, we can use a GridFunction
and Set
, which then lets us view an extension of these boundary values into the domain.
[24]:
g = GridFunction(H1(mesh), name='bdry')
g.Set(cf, definedon=mesh.Boundaries('b|r'))
Draw(g);