This page was generated from unit-2.6-stokes/stokes.ipynb.

2.6 Stokes equation

Find \(u \in [H^1_D]^2\) and \(p \in L_2\) such that

\[\begin{split}\DeclareMathOperator{\Div}{div} \begin{array}{ccccll} \int \nabla u : \nabla v & + & \int \Div v \, p & = & \int f v & \forall \, v \\ \int \Div u \, q & & & = & 0 & \forall \, q \end{array}\end{split}\]

Define channel geometry and mesh it:

[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import *

shape = Rectangle(2,0.41).Circle(0.2,0.2,0.05).Reverse().Face()
shape.edges.name="wall"
shape.edges.Min(X).name="inlet"
shape.edges.Max(X).name="outlet"
Draw (shape);
[2]:
geo = OCCGeometry(shape, dim=2)
mesh = Mesh(geo.GenerateMesh(maxh=0.05))
mesh.Curve(3)
Draw (mesh);

Use Taylor Hood finite element pairing: Vector-valued continuous \(P^2\) elements for velocity, and continuous \(P^1\) for pressure:

[3]:
V = VectorH1(mesh, order=2, dirichlet="wall|inlet|cyl")
Q = H1(mesh, order=1)
X = V*Q

Setup bilinear-form for Stokes. We give names for all scalar field components. The divergence is constructed from partial derivatives of the velocity components.

[4]:
(u,p),(v,q) = X.TnT()

stokes = InnerProduct(Grad(u), Grad(v))*dx + div(u)*q*dx + div(v)*p*dx
a = BilinearForm(stokes).Assemble()

Set inhomogeneous Dirichlet boundary condition only on inlet boundary:

[5]:
gf = GridFunction(X)
gfu, gfp = gf.components

uin = CF ( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.Set(uin, definedon=mesh.Boundaries("inlet"))
Draw(gfu, mesh, min=0, max=2)
SetVisualization(max=2)

Solve equation:

[6]:
res = -a.mat * gf.vec
inv = a.mat.Inverse(freedofs=X.FreeDofs(), inverse="umfpack")
gf.vec.data += inv * res
Draw(gfu, mesh);

Testing different velocity-pressure pairs

Now we define a Stokes setup function to test different spaces:

[7]:
def SolveStokes(X):
    (u,p),(v,q) = X.TnT()

    stokes = InnerProduct(Grad(u), Grad(v))*dx + div(u)*q*dx + div(v)*p*dx
    a = BilinearForm(stokes).Assemble()

    gf = GridFunction(X)
    gfu, gfp = gf.components

    uin = CF ( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
    gfu.Set(uin, definedon=mesh.Boundaries("inlet"))

    res = -a.mat * gf.vec
    inv = a.mat.Inverse(freedofs=X.FreeDofs(), inverse="umfpack")
    gf.vec.data += inv * res

    Draw(gfu, mesh)

    return gfu

Higher order Taylor-Hood elements:

[8]:
V = VectorH1(mesh, order=4, dirichlet="wall|inlet|cyl")
Q = H1(mesh, order=3)
X = V*Q

gfu = SolveStokes(X)

With discontinuous pressure elements P2-P1 is unstable:

[9]:
V = VectorH1(mesh, order=2, dirichlet="wall|inlet|cyl")
Q = L2(mesh, order=1)
print ("V.ndof =", V.ndof, ", Q.ndof =", Q.ndof)
X = V*Q

gfu = SolveStokes(X)
V.ndof = 3424 , Q.ndof = 2406
---------------------------------------------------------------------------
NgException                               Traceback (most recent call last)
Cell In[9], line 6
      3 print ("V.ndof =", V.ndof, ", Q.ndof =", Q.ndof)
      4 X = V*Q
----> 6 gfu = SolveStokes(X)

Cell In[7], line 14, in SolveStokes(X)
     11 gfu.Set(uin, definedon=mesh.Boundaries("inlet"))
     13 res = -a.mat * gf.vec
---> 14 inv = a.mat.Inverse(freedofs=X.FreeDofs(), inverse="umfpack")
     15 gf.vec.data += inv * res
     17 Draw(gfu, mesh)

NgException: UmfpackInverse: Numeric factorization failed.

\(P^{2,+} \times P^{1,dc}\) elements:

[10]:
V = VectorH1(mesh, order=2, dirichlet="wall|inlet|cyl")
V.SetOrder(TRIG,3)
V.Update()
Q = L2(mesh, order=1)
X = V*Q
print ("V.ndof =", V.ndof, ", Q.ndof =", Q.ndof)

gfu = SolveStokes(X)
V.ndof = 5028 , Q.ndof = 2406

the mini element:

[11]:
V = VectorH1(mesh, order=1, dirichlet="wall|inlet|cyl")
V.SetOrder(TRIG,3)
V.Update()
Q = H1(mesh, order=1)
X = V*Q

gfu = SolveStokes(X)

Stokes as a block-system

We can now define separate bilinear-form and matrices for A and B, and combine them to a block-system:

[12]:
V = VectorH1(mesh, order=3, dirichlet="wall|inlet|cyl")
Q = H1(mesh, order=2)

u,v = V.TnT()
p,q = Q.TnT()

a = BilinearForm(InnerProduct(Grad(u),Grad(v))*dx).Assemble()
b = BilinearForm(div(u)*q*dx).Assemble()

Needed as preconditioner for the pressure:

[13]:
mp = BilinearForm(p*q*dx).Assemble()

Two right hand sides for the two spaces:

[14]:
f = LinearForm(V)
# f += CF((0,x-0.5)) * v * dx
f.Assemble()

g = LinearForm(Q)
g.Assemble()
[14]:
<ngsolve.comp.LinearForm at 0x7f314eabfa70>

Two GridFunctions for velocity and pressure:

[15]:
gfu = GridFunction(V, name="u")
gfp = GridFunction(Q, name="p")
uin = CoefficientFunction( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.Set(uin, definedon=mesh.Boundaries("inlet"))

Combine everything to a block-system. BlockMatrix and BlockVector store references to the original matrices and vectors, no new large matrices are allocated. The same for the transpose matrix b.mat.T. It stores a wrapper for the original matrix, and replaces the call of the Mult function by MultTrans.

[16]:
K = BlockMatrix( [ [a.mat, b.mat.T], [b.mat, None] ] )
C = BlockMatrix( [ [a.mat.Inverse(V.FreeDofs()), None], [None, mp.mat.Inverse()] ] )

rhs = BlockVector ( [f.vec, g.vec] )
sol = BlockVector( [gfu.vec, gfp.vec] )

solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, printrates='\r', initialize=False);
LinearSolver converged in 68 iterations to residual 2.3534539744561125e-07
[17]:
Draw (gfu);

A stabilised lowest order formulation:

[18]:
mesh = Mesh( geo.GenerateMesh(maxh=0.02))

V = VectorH1(mesh, order=1, dirichlet="wall|inlet|cyl")
Q = H1(mesh, order=1)

u,v = V.TnT()
p,q = Q.TnT()

a = BilinearForm(InnerProduct(Grad(u),Grad(v))*dx).Assemble()
b = BilinearForm(div(u)*q*dx).Assemble()
h = specialcf.mesh_size
c = BilinearForm(-0.1*h*h*grad(p)*grad(q)*dx).Assemble()
[19]:
mp = BilinearForm(p*q*dx).Assemble()

f = LinearForm(V)
f.Assemble()

g = LinearForm(Q)
g.Assemble()

gfu = GridFunction(V, name="u")
gfp = GridFunction(Q, name="p")
uin = CF( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.Set(uin, definedon=mesh.Boundaries("inlet"))

K = BlockMatrix( [ [a.mat, b.mat.T], [b.mat, c.mat] ] )
C = BlockMatrix( [ [a.mat.Inverse(V.FreeDofs()), None], [None, mp.mat.Inverse()] ] )

rhs = BlockVector ( [f.vec, g.vec] )
sol = BlockVector( [gfu.vec, gfp.vec] )

solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, printrates='\r', initialize=False, maxsteps=200);
LinearSolver converged in 103 iterations to residual 6.2071818814675e-07
[20]:
Draw (gfu);
[21]:
Draw (gfp);

(P1-iso-P2)-P1

The mesh is uniformly refined once. The velocity space is \(P^1\) on the refined mesh, but the pressure is continuous \(P^1\) in the coarse space. We obtain this by representing the pressure in the range of the coarse-to-fine prolongation operator.

[22]:
mesh = Mesh( geo.GenerateMesh(maxh=0.02))

V = VectorH1(mesh, order=1, dirichlet="wall|inlet|cyl")
Q = H1(mesh, order=1)

u,v = V.TnT()
p,q = Q.TnT()

mp = BilinearForm(p*q*dx).Assemble()
invmp = mp.mat.Inverse(inverse="sparsecholesky")

mesh.ngmesh.Refine()
V.Update()
Q.Update()
[23]:
# prolongation operator from mesh-level 0 to level 1:
prol = Q.Prolongation().Operator(1)
invmp2 = prol @ invmp @ prol.T

a = BilinearForm(InnerProduct(Grad(u),Grad(v))*dx).Assemble()
b = BilinearForm(div(u)*q*dx).Assemble()

f = LinearForm(V)
f.Assemble()

g = LinearForm(Q)
g.Assemble()

gfu = GridFunction(V, name="u")
gfp = GridFunction(Q, name="p")
uin = CF( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.Set(uin, definedon=mesh.Boundaries("inlet"))

K = BlockMatrix( [ [a.mat, b.mat.T], [b.mat, None] ] )
C = BlockMatrix( [ [a.mat.Inverse(V.FreeDofs()), None], [None, invmp2] ] )

rhs = BlockVector ( [f.vec, g.vec] )
sol = BlockVector( [gfu.vec, gfp.vec] )

solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, \
                printrates='\r', initialize=False, maxsteps=200);
LinearSolver converged in 66 iterations to residual 8.86191466993846e-07
[24]:
Draw (gfu)
Draw (gfp);
[ ]: