This page was generated from unit-1.1-poisson/poisson.ipynb.

1.1 First NGSolve example

Let us solve the Poisson problem of finding \(u\) satisfying

\[\begin{split}\begin{aligned} -\Delta u & = f && \text { in the unit square}, \\ u & = 0 && \text{ on the bottom and right parts of the boundary}, \\ \frac{\partial u }{\partial n } & = 0 && \text{ on the remaining boundary parts}. \end{aligned}\end{split}\]

Quick steps to solution:

1. Import NGSolve and Netgen Python modules:

[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.geom2d import unit_square

2. Generate an unstructured mesh

[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
mesh.nv, mesh.ne   # number of vertices & elements
[2]:
(37, 52)
  • Here we prescribed a maximal mesh-size of 0.2 using the maxh flag.

  • The mesh can be viewed by switching to the Mesh tab in the Netgen GUI.

3. Declare a finite element space:

[3]:
fes = H1(mesh, order=2, dirichlet="bottom|right")
fes.ndof  # number of unknowns in this space
[3]:
125

Python’s help system displays further documentation.

[4]:
help(fes)
Help on H1 in module ngsolve.comp object:

class H1(FESpace)
 |  An H1-conforming finite element space.
 |
 |  The H1 finite element space consists of continuous and
 |  element-wise polynomial functions. It uses a hierarchical (=modal)
 |  basis built from integrated Legendre polynomials on tensor-product elements,
 |  and Jaboci polynomials on simplicial elements.
 |
 |  Boundary values are well defined. The function can be used directly on the
 |  boundary, using the trace operator is optional.
 |
 |  The H1 space supports variable order, which can be set individually for edges,
 |  faces and cells.
 |
 |  Internal degrees of freedom are declared as local dofs and are eliminated
 |  if static condensation is on.
 |
 |  The wirebasket consists of all vertex dofs. Optionally, one can include the
 |  first (the quadratic bubble) edge basis function, or all edge basis functions
 |  into the wirebasket.
 |
 |  Keyword arguments can be:
 |
 |  order: int = 1
 |    order of finite element space
 |  complex: bool = False
 |    Set if FESpace should be complex
 |  dirichlet: regexpr
 |    Regular expression string defining the dirichlet boundary.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet = 'top|right'
 |  dirichlet_bbnd: regexpr
 |    Regular expression string defining the dirichlet bboundary,
 |    i.e. points in 2D and edges in 3D.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet_bbnd = 'top|right'
 |  dirichlet_bbbnd: regexpr
 |    Regular expression string defining the dirichlet bbboundary,
 |    i.e. points in 3D.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet_bbbnd = 'top|right'
 |  definedon: Region or regexpr
 |    FESpace is only defined on specific Region, created with mesh.Materials('regexpr')
 |    or mesh.Boundaries('regexpr'). If given a regexpr, the region is assumed to be
 |    mesh.Materials('regexpr').
 |  dim: int = 1
 |    Create multi dimensional FESpace (i.e. [H1]^3)
 |  dgjumps: bool = False
 |    Enable discontinuous space for DG methods, this flag is needed for DG methods,
 |    since the dofs have a different coupling then and this changes the sparsity
 |    pattern of matrices.
 |  autoupdate: bool = False
 |    Automatically update on a change to the mesh.
 |  low_order_space: bool = True
 |    Generate a lowest order space together with the high-order space,
 |    needed for some preconditioners.
 |  order_policy: ORDER_POLICY = ORDER_POLICY.OLDSTYLE
 |    CONSTANT .. use the same fixed order for all elements,
 |    NODAL ..... use the same order for nodes of same shape,
 |    VARIABLE ... use an individual order for each edge, face and cell,
 |    OLDSTYLE .. as it used to be for the last decade
 |  wb_withedges: bool = true(3D) / false(2D)
 |    use lowest-order edge dofs for BDDC wirebasket
 |  wb_fulledges: bool = false
 |    use all edge dofs for BDDC wirebasket
 |
 |  Method resolution order:
 |      H1
 |      FESpace
 |      NGS_Object
 |      pybind11_builtins.pybind11_object
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __getstate__(...)
 |      __getstate__(self: ngsolve.comp.FESpace) -> tuple
 |
 |  __init__(...)
 |      __init__(self: ngsolve.comp.H1, mesh: ngsolve.comp.Mesh, **kwargs) -> None
 |
 |  __setstate__(...)
 |      __setstate__(self: ngsolve.comp.H1, arg0: tuple) -> None
 |
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |
 |  __flags_doc__(...) from builtins.PyCapsule
 |      __flags_doc__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |
 |  __dict__
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from FESpace:
 |
 |  ApplyM(...)
 |      ApplyM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |      Apply mass-matrix. Available only for L2-like spaces
 |
 |  ConvertL2Operator(...)
 |      ConvertL2Operator(self: ngsolve.comp.FESpace, l2space: ngsolve.comp.FESpace) -> BaseMatrix
 |
 |  CouplingType(...)
 |      CouplingType(self: ngsolve.comp.FESpace, dofnr: int) -> ngsolve.comp.COUPLING_TYPE
 |
 |
 |               Get coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |  CreateDirectSolverCluster(...)
 |      CreateDirectSolverCluster(self: ngsolve.comp.FESpace, **kwargs) -> list
 |
 |  CreateSmoothingBlocks(...)
 |      CreateSmoothingBlocks(self: ngsolve.comp.FESpace, **kwargs) -> pyngcore.pyngcore.Table_I
 |
 |  Elements(...)
 |      Elements(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. Elements(self: ngsolve.comp.FESpace, VOL_or_BND: ngsolve.comp.VorB = <VorB.VOL: 0>) -> ngsolve.comp.FESpaceElementRange
 |
 |
 |      Returns an iterable range of elements.
 |
 |      Parameters:
 |
 |      VOL_or_BND : ngsolve.comp.VorB
 |        input VOL, BND, BBND,...
 |
 |
 |
 |      2. Elements(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.Region) -> Iterator
 |
 |  FinalizeUpdate(...)
 |      FinalizeUpdate(self: ngsolve.comp.FESpace) -> None
 |
 |      finalize update
 |
 |  FreeDofs(...)
 |      FreeDofs(self: ngsolve.comp.FESpace, coupling: bool = False) -> pyngcore.pyngcore.BitArray
 |
 |
 |
 |      Return BitArray of free (non-Dirichlet) dofs\n
 |      coupling=False ... all free dofs including local dofs\n
 |      coupling=True .... only element-boundary free dofs
 |
 |      Parameters:
 |
 |      coupling : bool
 |        input coupling
 |
 |  GetDofNrs(...)
 |      GetDofNrs(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. GetDofNrs(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |        input element id
 |
 |
 |
 |      2. GetDofNrs(self: ngsolve.comp.FESpace, ni: ngsolve.comp.NodeId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ni : ngsolve.comp.NodeId
 |        input node id
 |
 |  GetDofs(...)
 |      GetDofs(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> pyngcore.pyngcore.BitArray
 |
 |
 |      Returns all degrees of freedom in given region.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  GetFE(...)
 |      GetFE(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> object
 |
 |
 |      Get the finite element to corresponding element id.
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |         input element id
 |
 |  GetOrder(...)
 |      GetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId) -> int
 |
 |      return order of node.
 |      by now, only isotropic order is supported here
 |
 |  GetTrace(...)
 |      GetTrace(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  GetTraceTrans(...)
 |      GetTraceTrans(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  HideAllDofs(...)
 |      HideAllDofs(self: ngsolve.comp.FESpace, component: object = <ngsolve.ngstd.DummyArgument>) -> None
 |
 |      set all visible coupling types to HIDDEN_DOFs (will be overwritten by any Update())
 |
 |  InvM(...)
 |      InvM(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None) -> BaseMatrix
 |
 |  Mass(...)
 |      Mass(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None, definedon: Optional[ngsolve.comp.Region] = None) -> BaseMatrix
 |
 |  ParallelDofs(...)
 |      ParallelDofs(self: ngsolve.comp.FESpace) -> ngsolve.la.ParallelDofs
 |
 |      Return dof-identification for MPI-distributed meshes
 |
 |  Prolongation(...)
 |      Prolongation(self: ngsolve.comp.FESpace) -> ngmg::Prolongation
 |
 |      Return prolongation operator for use in multi-grid
 |
 |  Range(...)
 |      Range(self: ngsolve.comp.FESpace, arg0: int) -> ngsolve.la.DofRange
 |
 |      deprecated, will be only available for ProductSpace
 |
 |  SetCouplingType(...)
 |      SetCouplingType(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetCouplingType(self: ngsolve.comp.FESpace, dofnr: int, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |
 |
 |      2. SetCouplingType(self: ngsolve.comp.FESpace, dofnrs: ngsolve.ngstd.IntRange, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type for interval of dofs.
 |
 |      Parameters:
 |
 |      dofnrs : Range
 |        range of dofs
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |  SetDefinedOn(...)
 |      SetDefinedOn(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> None
 |
 |
 |      Set the regions on which the FESpace is defined.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  SetOrder(...)
 |      SetOrder(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetOrder(self: ngsolve.comp.FESpace, element_type: ngsolve.fem.ET, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      element_type : ngsolve.fem.ET
 |        input element type
 |
 |      order : object
 |        input polynomial order
 |
 |
 |      2. SetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      nodeid : ngsolve.comp.NodeId
 |        input node id
 |
 |      order : int
 |        input polynomial order
 |
 |  SolveM(...)
 |      SolveM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |
 |               Solve with the mass-matrix. Available only for L2-like spaces.
 |
 |      Parameters:
 |
 |      vec : ngsolve.la.BaseVector
 |        input right hand side vector
 |
 |      rho : ngsolve.fem.CoefficientFunction
 |        input CF
 |
 |  TestFunction(...)
 |      TestFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a testfunction for :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  TnT(...)
 |      TnT(self: ngsolve.comp.FESpace) -> Tuple[object, object]
 |
 |      Return a tuple of trial and testfunction
 |
 |  TraceOperator(...)
 |      TraceOperator(self: ngsolve.comp.FESpace, tracespace: ngsolve.comp.FESpace, average: bool) -> BaseMatrix
 |
 |  TrialFunction(...)
 |      TrialFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a trialfunction in :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  Update(...)
 |      Update(self: ngsolve.comp.FESpace) -> None
 |
 |      update space after mesh-refinement
 |
 |  UpdateDofTables(...)
 |      UpdateDofTables(self: ngsolve.comp.FESpace) -> None
 |
 |      update dof-tables after changing polynomial order distribution
 |
 |  __eq__(...)
 |      __eq__(self: ngsolve.comp.FESpace, space: ngsolve.comp.FESpace) -> bool
 |
 |  __mul__(...)
 |      __mul__(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace) -> ngcomp::CompoundFESpace
 |
 |  __pow__(...)
 |      __pow__(self: ngsolve.comp.FESpace, arg0: int) -> ngcomp::CompoundFESpaceAllSame
 |
 |  __str__(...)
 |      __str__(self: ngsolve.comp.FESpace) -> str
 |
 |  __timing__(...)
 |      __timing__(self: ngsolve.comp.FESpace) -> object
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from FESpace:
 |
 |  __special_treated_flags__(...) from builtins.PyCapsule
 |      __special_treated_flags__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from FESpace:
 |
 |  autoupdate
 |
 |  components
 |      deprecated, will be only available for ProductSpace
 |
 |  couplingtype
 |
 |  dim
 |      multi-dim of FESpace
 |
 |  globalorder
 |      query global order of space
 |
 |  is_complex
 |
 |  loembedding
 |
 |  lospace
 |
 |  mesh
 |      mesh on which the FESpace is created
 |
 |  ndof
 |      number of degrees of freedom
 |
 |  ndofglobal
 |      global number of dofs on MPI-distributed mesh
 |
 |  type
 |      type of finite element space
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from FESpace:
 |
 |  __hash__ = None
 |
 |  ----------------------------------------------------------------------
 |  Readonly properties inherited from NGS_Object:
 |
 |  __memory__
 |
 |  flags
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from NGS_Object:
 |
 |  name
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from pybind11_builtins.pybind11_object:
 |
 |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
 |      Create and return a new object.  See help(type) for accurate signature.

4. Declare test function, trial function, and grid function

  • Test and trial function are symbolic objects - called ProxyFunctions - that help you construct bilinear forms (and have no space to hold solutions).

  • GridFunctions, on the other hand, represent functions in the finite element space and contains memory to hold coefficient vectors.

[5]:
u = fes.TrialFunction()  # symbolic object
v = fes.TestFunction()   # symbolic object
gfu = GridFunction(fes)  # solution

Alternately, you can get both the trial and test variables at once:

[6]:
u, v = fes.TnT()

5. Define and assemble linear and bilinear forms:

[7]:
a = BilinearForm(fes, symmetric=True)
a += grad(u)*grad(v)*dx
a.Assemble()

f = LinearForm(fes)
f += x*v*dx
f.Assemble()
[7]:
<ngsolve.comp.LinearForm at 0x7f66045af4b0>

You can examine the linear system in more detail:

[8]:
print(f.vec)
 0.000333333
 0.00633333
 0.00633333
 0.000800951
 0.00388508
 0.0076445
 0.0113284
 0.0178159
 0.0278275
 0.0173112
 0.0154685
 0.0181138
 0.0204443
 0.00955428
 0.00775661
 0.0042821
 0.000386462
 0.00215946
 0.000477049
 0.00259004
 0.0118211
 0.0192953
 0.0307721
 0.0302149
 0.0269091
 0.0285724
 0.0173381
 0.0183376
 0.013492
 0.00550585
 0.00686885
 0.0217628
 0.0157415
 0.0211763
 0.0113116
 0.0174036
 0.0226306
 -6.66667e-05
 -3.33333e-05
 -0.000766667
 -0.0008
 -0.0008
 -0.000766667
 -9.52746e-05
 -1.93231e-05
 -0.000125688
 -0.000238492
 -0.000214885
 -0.000425538
 -0.000384163
 -0.000563154
 -0.000717295
 -0.000526134
 -0.000884261
 -0.00103647
 -0.0017373
 -0.0014478
 -0.000807656
 -0.00181551
 -0.00165701
 -0.000673671
 -0.00145372
 -0.00133575
 -0.000648933
 -0.00126099
 -0.00123885
 -0.00157569
 -0.0014435
 -0.000443027
 -0.00135145
 -0.00100443
 -0.000389019
 -0.00079759
 -0.00075629
 -0.000261064
 -0.000708227
 -0.000587395
 -0.000442862
 -0.000285407
 -1.93231e-05
 -7.72924e-05
 -2.38524e-05
 -0.000154323
 -0.000172093
 -0.000278246
 -2.38524e-05
 -9.54097e-05
 -0.00032181
 -0.000183132
 -0.000663312
 -0.00040581
 -0.000559774
 -0.000983527
 -0.000855246
 -0.000718479
 -0.00139785
 -0.00103282
 -0.00113578
 -0.00100047
 -0.000920078
 -0.00114204
 -0.000959829
 -0.000896019
 -0.000996606
 -0.000969011
 -0.00072904
 -0.000808183
 -0.000701041
 -0.000840338
 -0.000845828
 -0.000375439
 -0.000528432
 -0.000739237
 -0.000345317
 -0.000459317
 -0.000387811
 -0.000819442
 -0.000864813
 -0.000865653
 -0.000578816
 -0.000797631
 -0.000841733
 -0.000870701
 -0.000703596
 -0.000824523


[9]:
print(a.mat)
Row 0:   0: 1   4: -0.5   19: -0.5   37: -0.0833333   38: -0.0833333   47: 0.166667
Row 1:   1: 1   7: -0.5   8: -0.5   39: -0.0833333   40: -0.0833333   55: 0.166667
Row 2:   2: 1   11: -0.5   12: -0.5   41: -0.0833333   42: -0.0833333   66: 0.166667
Row 3:   3: 0.92654   15: -0.429776   16: -0.404531   29: -0.0922334   43: -0.0192115   44: 0.00383926   45: -0.139051   78: 0.0908408   80: 0.0635826
Row 4:   0: -0.5   4: 1.89214   5: -0.369141   19: -0.170235   20: -0.852766   37: 0   38: 0.0833333   46: -0.0554044   47: -0.170057   48: -0.089896   50: 0.116928   87: 0.115096
Row 5:   4: -0.369141   5: 1.75902   6: -0.330249   20: -0.393103   21: -0.666525   46: -0.0302389   48: 0.0917624   49: -0.0503815   50: -0.12223   51: -0.0903197   53: 0.105423   89: 0.0959843
Row 6:   5: -0.330249   6: 1.7383   7: -0.312052   21: -0.525655   22: -0.570346   49: -0.039568   51: 0.0946095   52: -0.0418649   53: -0.108234   54: -0.10005   56: 0.0938736   92: 0.101234
Row 7:   1: -0.5   6: -0.312052   7: 1.90043   8: -0.209289   22: -0.879085   39: 0   40: 0.0833333   52: -0.0507822   54: 0.102791   55: -0.179065   56: -0.0868901   58: 0.130613
Row 8:   1: -0.5   7: -0.209289   8: 1.79706   9: -0.419471   22: -0.261905   23: -0.406398   39: 0.0833333   40: 0   55: -0.110935   56: 0.0624833   57: -0.0183232   58: -0.0842912   59: -0.0859608   61: 0.088235   95: 0.0654588
Row 9:   8: -0.419471   9: 1.77344   10: -0.299906   23: -0.681965   24: -0.372103   57: -0.0641858   59: 0.134098   60: -0.0270683   61: -0.104861   62: -0.0994593   64: 0.0770526   97: 0.0844239
Row 10:   9: -0.299906   10: 1.78385   11: -0.274651   24: -0.849309   25: -0.359984   60: -0.0725667   62: 0.122551   63: -0.0299194   64: -0.0800624   65: -0.11476   67: 0.0756945   100: 0.0990629
Row 11:   2: -0.5   10: -0.274651   11: 1.99359   12: -0.0983666   25: -1.12058   41: 0   42: 0.0833333   63: -0.0736497   65: 0.119425   66: -0.196446   67: -0.0621696   69: 0.129507
Row 12:   2: -0.5   11: -0.0983666   12: 1.83136   13: -0.218895   25: -0.244791   26: -0.769308   41: 0.0833333   42: 0   66: -0.122636   67: 0.0556974   68: -0.0486254   69: -0.0959869   70: -0.037978   72: 0.085108   103: 0.081088
Row 13:   12: -0.218895   13: 1.75747   14: -0.333769   26: -0.704669   27: -0.500134   68: -0.0607518   70: 0.0972344   71: -0.0542939   72: -0.0655443   73: -0.112321   75: 0.109922   105: 0.0857548
Row 14:   13: -0.333769   14: 1.75676   15: -0.403014   27: -0.429757   28: -0.590218   71: -0.0356996   73: 0.0913278   74: -0.0553925   75: -0.0986054   76: -0.103096   77: 0.122561   107: 0.0789038
Row 15:   3: -0.429776   14: -0.403014   15: 1.80299   28: -0.281759   29: -0.688445   43: -0.0612978   45: 0.132927   74: -0.0263034   76: 0.0934724   77: -0.120612   78: -0.0922857   110: 0.0740994
Row 16:   3: -0.404531   16: 2.0764   17: -0.35846   29: -1.31341   44: -0.11329   45: 0.180712   79: -0.105612   80: -0.127165   82: 0.165355
Row 17:   16: -0.35846   17: 1.76572   18: -0.441688   29: -0.2915   30: -0.172197   34: -0.501877   79: -0.00383926   80: 0.0635826   81: 0.0030286   82: -0.0992307   83: -0.117773   84: -0.0764721   86: 0.0705861   113: 0.0842313   115: 0.0758868
Row 18:   17: -0.441688   18: 2.02918   19: -0.405345   30: -1.18215   81: -0.101541   83: 0.175156   85: -0.095484   86: -0.141172   88: 0.163041
Row 19:   0: -0.5   4: -0.170235   18: -0.405345   19: 1.79579   20: -0.434821   30: -0.285392   37: 0.0833333   38: 0   47: -0.122291   48: 0.0673304   85: -0.0030286   86: 0.0705861   87: -0.0729092   88: -0.10107   90: 0.078049
Row 20:   4: -0.852766   5: -0.393103   19: -0.434821   20: 3.55048   21: -0.611678   30: -0.667364   32: -0.590751   46: 0.0856433   47: 0.125681   48: -0.0691968   50: -0.105442   51: 0.085316   87: -0.156576   88: 0.103365   89: -0.0870282   90: -0.0802209   91: -0.0932833   94: 0.103658   114: 0.0880834
Row 21:   5: -0.666525   6: -0.525655   20: -0.611678   21: 3.49993   22: -0.49992   31: -0.763067   32: -0.433089   49: 0.0899494   50: 0.110744   51: -0.0896057   53: -0.0937366   54: 0.0913963   89: -0.101785   91: 0.0929875   92: -0.111805   93: -0.0710673   94: -0.115323   96: 0.103729   116: 0.0945164
Row 22:   6: -0.570346   7: -0.879085   8: -0.261905   21: -0.49992   22: 3.64558   23: -0.933015   31: -0.501309   52: 0.0926471   53: 0.0965478   54: -0.0941373   55: 0.123334   56: -0.0694667   58: -0.189707   59: 0.110024   92: -0.0955738   93: 0.0823459   95: -0.0572194   96: -0.101493   98: 0.102698
Row 23:   8: -0.406398   9: -0.681965   22: -0.933015   23: 3.59109   24: -0.614411   31: -0.407342   35: -0.547958   57: 0.082509   58: 0.143384   59: -0.158161   61: -0.080099   62: 0.111251   95: -0.092364   96: 0.104482   97: -0.0898208   98: -0.112508   99: -0.0655623   102: 0.0809719   117: 0.0759167
Row 24:   9: -0.372103   10: -0.849309   23: -0.614411   24: 3.56414   25: -0.584965   33: -0.356721   35: -0.786629   60: 0.099635   61: 0.0967247   62: -0.134342   64: -0.0762241   65: 0.118141   97: -0.10047   99: 0.106147   100: -0.106083   101: -0.113922   102: -0.0629812   104: 0.0854369   121: 0.0879389
Row 25:   10: -0.359984   11: -1.12058   12: -0.244791   24: -0.584965   25: 3.72246   26: -0.780094   33: -0.632047   63: 0.103569   64: 0.0792338   65: -0.122805   66: 0.152416   67: -0.0692223   69: -0.197286   70: 0.0856684   100: -0.09037   101: 0.10863   103: -0.0465446   104: -0.0941812   106: 0.0908919
Row 26:   12: -0.769308   13: -0.704669   25: -0.780094   26: 3.67759   27: -0.749926   33: -0.673588   68: 0.109377   69: 0.163765   70: -0.144925   72: -0.110393   73: 0.11846   103: -0.133275   104: 0.0995248   105: -0.115276   106: -0.109063   108: 0.121803
Row 27:   13: -0.500134   14: -0.429757   26: -0.749926   27: 3.57447   28: -0.916705   33: -0.508712   36: -0.469238   71: 0.0899935   72: 0.0908291   73: -0.097467   75: -0.122737   76: 0.10437   105: -0.055669   106: 0.0898276   107: -0.0812277   108: -0.0961255   109: -0.142519   112: 0.129642   122: 0.0910832
Row 28:   14: -0.590218   15: -0.281759   27: -0.916705   28: 3.63466   29: -0.913179   34: -0.598184   36: -0.334611   74: 0.0816959   75: 0.11142   76: -0.0947465   77: -0.134212   78: 0.0994762   107: -0.067072   109: 0.108436   110: -0.0602816   111: -0.10505   112: -0.144413   113: 0.113002   123: 0.0917459
Row 29:   3: -0.0922334   15: -0.688445   16: -1.31341   17: -0.2915   28: -0.913179   29: 3.88193   34: -0.583158   43: 0.0805093   44: 0.109451   45: -0.174588   77: 0.132263   78: -0.0980313   79: 0.109451   80: 0   82: -0.167081   84: 0.106213   110: -0.089167   111: 0.109101   113: -0.118121
Row 30:   17: -0.172197   18: -1.18215   19: -0.285392   20: -0.667364   30: 3.78248   32: -0.710649   34: -0.764723   81: 0.0985126   83: -0.174589   84: 0.104776   85: 0.0985126   86: 1.38778e-17   87: 0.114389   88: -0.165337   90: -0.101436   91: 0.0982741   114: -0.0957807   115: -0.0932702   119: 0.115948
Row 31:   21: -0.763067   22: -0.501309   23: -0.407342   31: 3.63771   32: -0.715588   35: -1.00537   36: -0.245036   92: 0.106145   93: -0.0949869   94: 0.11602   95: 0.0841246   96: -0.106718   98: -0.115899   99: 0.0996652   116: -0.0929254   117: -0.0362641   118: -0.159491   120: 0.0961702   124: 0.10416
Row 32:   20: -0.590751   21: -0.433089   30: -0.710649   31: -0.715588   32: 3.50593   34: -0.429218   36: -0.62664   89: 0.0928289   90: 0.103608   91: -0.0979783   93: 0.0837082   94: -0.104356   114: -0.0777241   115: 0.0925576   116: -0.082857   118: 0.118413   119: -0.114227   120: -0.10718   123: 0.0932062
Row 33:   24: -0.356721   25: -0.632047   26: -0.673588   27: -0.508712   33: 3.54391   35: -0.812646   36: -0.5602   100: 0.0973905   101: -0.122589   102: 0.0846519   103: 0.0987313   104: -0.0907806   105: 0.0851898   106: -0.0716564   108: -0.113808   109: 0.113403   121: -0.0604965   122: -0.131322   124: 0.111286
Row 34:   17: -0.501877   28: -0.598184   29: -0.583158   30: -0.764723   32: -0.429218   34: 3.51649   36: -0.639329   82: 0.100956   83: 0.117207   84: -0.134517   110: 0.0753492   111: -0.0906772   112: 0.115025   113: -0.0791125   114: 0.0854215   115: -0.0751743   119: -0.106008   120: 0.0921225   123: -0.100593
Row 35:   23: -0.547958   24: -0.786629   31: -1.00537   33: -0.812646   35: 3.71605   36: -0.563445   97: 0.105867   98: 0.12571   99: -0.14025   101: 0.127881   102: -0.102643   117: -0.107555   118: 0.149407   121: -0.102917   122: 0.110477   124: -0.165977
Row 36:   27: -0.469238   28: -0.334611   31: -0.245036   32: -0.62664   33: -0.5602   34: -0.639329   35: -0.563445   36: 3.4385   107: 0.0693959   108: 0.0881303   109: -0.0793199   111: 0.0866269   112: -0.100254   116: 0.081266   117: 0.0679026   118: -0.108329   119: 0.104287   120: -0.081113   121: 0.0754744   122: -0.0702381   123: -0.084359   124: -0.0494695
Row 37:   0: -0.0833333   4: 0   19: 0.0833333   37: 0.0416667   38: 0   47: -0.0208333
Row 38:   0: -0.0833333   4: 0.0833333   19: 0   37: 0   38: 0.0416667   47: -0.0208333
Row 39:   1: -0.0833333   7: 0   8: 0.0833333   39: 0.0416667   40: 0   55: -0.0208333
Row 40:   1: -0.0833333   7: 0.0833333   8: 0   39: 0   40: 0.0416667   55: -0.0208333
Row 41:   2: -0.0833333   11: 0   12: 0.0833333   41: 0.0416667   42: 1.73472e-18   66: -0.0208333
Row 42:   2: -0.0833333   11: 0.0833333   12: 0   41: 1.73472e-18   42: 0.0416667   66: -0.0208333
Row 43:   3: -0.0192115   15: -0.0612978   29: 0.0805093   43: 0.0380346   45: -0.0153244   78: -0.00480287
Row 44:   3: 0.00383926   16: -0.11329   29: 0.109451   44: 0.0442182   45: -0.0283226   80: 0.000959815
Row 45:   3: -0.139051   15: 0.132927   16: 0.180712   29: -0.174588   43: -0.0153244   44: -0.0283226   45: 0.0822529   78: -0.0179073   80: -0.0168555
Row 46:   4: -0.0554044   5: -0.0302389   20: 0.0856433   46: 0.0367917   48: -0.00755972   50: -0.0138511
Row 47:   0: 0.166667   4: -0.170057   19: -0.122291   20: 0.125681   37: -0.0208333   38: -0.0208333   47: 0.0801801   48: -0.00973948   87: -0.0216808
Row 48:   4: -0.089896   5: 0.0917624   19: 0.0673304   20: -0.0691968   46: -0.00755972   47: -0.00973948   48: 0.0753051   50: -0.0153809   87: -0.00709313
Row 49:   5: -0.0503815   6: -0.039568   21: 0.0899494   49: 0.0362477   51: -0.00989199   53: -0.0125954
Row 50:   4: 0.116928   5: -0.12223   20: -0.105442   21: 0.110744   46: -0.0138511   48: -0.0153809   50: 0.0732972   51: -0.0125094   89: -0.0151765
Row 51:   5: -0.0903197   6: 0.0946095   20: 0.085316   21: -0.0896057   49: -0.00989199   50: -0.0125094   51: 0.0727533   53: -0.0137604   89: -0.00881956
Row 52:   6: -0.0418649   7: -0.0507822   22: 0.0926471   52: 0.0361639   54: -0.0126956   56: -0.0104662
Row 53:   5: 0.105423   6: -0.108234   21: -0.0937366   22: 0.0965478   49: -0.0125954   51: -0.0137604   53: 0.072395   54: -0.0108388   92: -0.0132982
Row 54:   6: -0.10005   7: 0.102791   21: 0.0913963   22: -0.0941373   52: -0.0126956   53: -0.0108388   54: 0.0723112   56: -0.0130022   92: -0.0120103
Row 55:   1: 0.166667   7: -0.179065   8: -0.110935   22: 0.123334   39: -0.0208333   40: -0.0208333   55: 0.0812205   56: -0.00690047   58: -0.023933
Row 56:   6: 0.0938736   7: -0.0868901   8: 0.0624833   22: -0.0694667   52: -0.0104662   54: -0.0130022   55: -0.00690047   56: 0.0757178   58: -0.00872036
Row 57:   8: -0.0183232   9: -0.0641858   23: 0.082509   57: 0.0381052   59: -0.0160465   61: -0.0045808
Row 58:   7: 0.130613   8: -0.0842912   22: -0.189707   23: 0.143384   55: -0.023933   56: -0.00872036   58: 0.0794122   59: -0.0234937   95: -0.0123524
Row 59:   8: -0.0859608   9: 0.134098   22: 0.110024   23: -0.158161   57: -0.0160465   58: -0.0234937   59: 0.0779636   61: -0.0174779   95: -0.00401225
Row 60:   9: -0.0270683   10: -0.0725667   24: 0.099635   60: 0.0374048   62: -0.0181417   64: -0.00676708
Row 61:   8: 0.088235   9: -0.104861   23: -0.080099   24: 0.0967247   57: -0.0045808   59: -0.0174779   61: 0.0746551   62: -0.0154439   97: -0.00873723
Row 62:   9: -0.0994593   10: 0.122551   23: 0.111251   24: -0.134342   60: -0.0181417   61: -0.0154439   62: 0.0739547   64: -0.0124961   97: -0.0123687
Row 63:   10: -0.0299194   11: -0.0736497   25: 0.103569   63: 0.0373361   65: -0.0184124   67: -0.00747984
Row 64:   9: 0.0770526   10: -0.0800624   24: -0.0762241   25: 0.0792338   60: -0.00676708   62: -0.0124961   64: 0.0744595   65: -0.0122889   100: -0.00751951
Row 65:   10: -0.11476   11: 0.119425   24: 0.118141   25: -0.122805   63: -0.0184124   64: -0.0122889   65: 0.0743907   67: -0.0114438   100: -0.0172462
Row 66:   2: 0.166667   11: -0.196446   12: -0.122636   25: 0.152416   41: -0.0208333   42: -0.0208333   66: 0.0838693   67: -0.00982573   69: -0.0282782
Row 67:   10: 0.0756945   11: -0.0621696   12: 0.0556974   25: -0.0692223   63: -0.00747984   65: -0.0114438   66: -0.00982573   67: 0.0795386   69: -0.00409861
Row 68:   12: -0.0486254   13: -0.0607518   26: 0.109377   68: 0.036465   70: -0.015188   72: -0.0121564
Row 69:   11: 0.129507   12: -0.0959869   25: -0.197286   26: 0.163765   66: -0.0282782   67: -0.00409861   69: 0.0835178   70: -0.0210432   103: -0.0198981
Row 70:   12: -0.037978   13: 0.0972344   25: 0.0856684   26: -0.144925   68: -0.015188   69: -0.0210432   70: 0.0777802   72: -0.00912064   103: -0.000373871
Row 71:   13: -0.0542939   14: -0.0356996   27: 0.0899935   71: 0.0364054   73: -0.0089249   75: -0.0135735
Row 72:   12: 0.085108   13: -0.0655443   26: -0.110393   27: 0.0908291   68: -0.0121564   70: -0.00912064   72: 0.0733455   73: -0.0154418   105: -0.00726543
Row 73:   13: -0.112321   14: 0.0913278   26: 0.11846   27: -0.097467   71: -0.0089249   72: -0.0154418   73: 0.073286   75: -0.013907   105: -0.0141733
Row 74:   14: -0.0553925   15: -0.0263034   28: 0.0816959   74: 0.0372162   76: -0.00657586   77: -0.0138481
Row 75:   13: 0.109922   14: -0.0986054   27: -0.122737   28: 0.11142   71: -0.0135735   73: -0.013907   75: 0.0732421   76: -0.0171108   107: -0.0107443
Row 76:   14: -0.103096   15: 0.0934724   27: 0.10437   28: -0.0947465   74: -0.00657586   75: -0.0171108   76: 0.0740529   77: -0.0167923   107: -0.00898164
Row 77:   14: 0.122561   15: -0.120612   28: -0.134212   29: 0.132263   74: -0.0138481   76: -0.0167923   77: 0.075446   78: -0.019705   110: -0.0133608
Row 78:   3: 0.0908408   15: -0.0922857   28: 0.0994762   29: -0.0980313   43: -0.00480287   45: -0.0179073   77: -0.019705   78: 0.0762645   110: -0.00516409
Row 79:   16: -0.105612   17: -0.00383926   29: 0.109451   79: 0.0422986   80: -0.000959815   82: -0.0264029
Row 80:   3: 0.0635826   16: -0.127165   17: 0.0635826   29: 0   44: 0.000959815   45: -0.0168555   79: -0.000959815   80: 0.0865168   82: -0.0149358
Row 81:   17: 0.0030286   18: -0.101541   30: 0.0985126   81: 0.0430318   83: -0.0253853   86: 0.00075715
Row 82:   16: 0.165355   17: -0.0992307   29: -0.167081   34: 0.100956   79: -0.0264029   80: -0.0149358   82: 0.0787237   84: -0.0153673   113: -0.00987183
Row 83:   17: -0.117773   18: 0.175156   30: -0.174589   34: 0.117207   81: -0.0253853   83: 0.0802655   84: -0.018262   86: -0.0184037   115: -0.0110397
Row 84:   17: -0.0764721   29: 0.106213   30: 0.104776   34: -0.134517   82: -0.0153673   83: -0.018262   84: 0.0736588   113: -0.011186   115: -0.00793202
Row 85:   18: -0.095484   19: -0.0030286   30: 0.0985126   85: 0.0415175   86: -0.00075715   88: -0.023871
Row 86:   17: 0.0705861   18: -0.141172   19: 0.0705861   30: 1.38778e-17   81: 0.00075715   83: -0.0184037   85: -0.00075715   86: 0.0845493   88: -0.0168894
Row 87:   4: 0.115096   19: -0.0729092   20: -0.156576   30: 0.114389   47: -0.0216808   48: -0.00709313   87: 0.0754888   88: -0.0174631   90: -0.0111342
Row 88:   18: 0.163041   19: -0.10107   20: 0.103365   30: -0.165337   85: -0.023871   86: -0.0168894   87: -0.0174631   88: 0.0784929   90: -0.00837806
Row 89:   5: 0.0959843   20: -0.0870282   21: -0.101785   32: 0.0928289   50: -0.0151765   51: -0.00881956   89: 0.0726899   91: -0.0102697   94: -0.0129375
Row 90:   19: 0.078049   20: -0.0802209   30: -0.101436   32: 0.103608   87: -0.0111342   88: -0.00837806   90: 0.0732211   91: -0.0142248   114: -0.0116772
Row 91:   20: -0.0932833   21: 0.0929875   30: 0.0982741   32: -0.0979783   89: -0.0102697   90: -0.0142248   91: 0.07243   94: -0.0129771   114: -0.0103437
Row 92:   6: 0.101234   21: -0.111805   22: -0.0955738   31: 0.106145   53: -0.0132982   54: -0.0120103   92: 0.0726747   93: -0.0105953   96: -0.015941
Row 93:   21: -0.0710673   22: 0.0823459   31: -0.0949869   32: 0.0837082   92: -0.0105953   93: 0.073308   94: -0.0131515   96: -0.00999121   116: -0.00777561
Row 94:   20: 0.103658   21: -0.115323   31: 0.11602   32: -0.104356   89: -0.0129375   91: -0.0129771   93: -0.0131515   94: 0.0729649   116: -0.0158535
Row 95:   8: 0.0654588   22: -0.0572194   23: -0.092364   31: 0.0841246   58: -0.0123524   59: -0.00401225   95: 0.0762715   96: -0.0107386   98: -0.0102926
Row 96:   21: 0.103729   22: -0.101493   23: 0.104482   31: -0.106718   92: -0.015941   93: -0.00999121   95: -0.0107386   96: 0.0729405   98: -0.015382
Row 97:   9: 0.0844239   23: -0.0898208   24: -0.10047   35: 0.105867   61: -0.00873723   62: -0.0123687   97: 0.0731731   99: -0.0163802   102: -0.0100864
Row 98:   22: 0.102698   23: -0.112508   31: -0.115899   35: 0.12571   95: -0.0102926   96: -0.015382   98: 0.0740746   99: -0.0186823   117: -0.0127451
Row 99:   23: -0.0655623   24: 0.106147   31: 0.0996652   35: -0.14025   97: -0.0163802   98: -0.0186823   99: 0.0742846   102: -0.0101565   117: -0.00623403
Row 100:   10: 0.0990629   24: -0.106083   25: -0.09037   33: 0.0973905   64: -0.00751951   65: -0.0172462   100: 0.0734869   101: -0.015073   104: -0.00927461
Row 101:   24: -0.113922   25: 0.10863   33: -0.122589   35: 0.127881   100: -0.015073   101: 0.0739912   102: -0.0155742   104: -0.0120846   121: -0.016396
Row 102:   23: 0.0809719   24: -0.0629812   33: 0.0846519   35: -0.102643   97: -0.0100864   99: -0.0101565   101: -0.0155742   102: 0.0741821   121: -0.00558875
Row 103:   12: 0.081088   25: -0.0465446   26: -0.133275   33: 0.0987313   69: -0.0198981   70: -0.000373871   103: 0.0774587   104: -0.0134205   106: -0.0112623
Row 104:   24: 0.0854369   25: -0.0941812   26: 0.0995248   33: -0.0907806   100: -0.00927461   101: -0.0120846   103: -0.0134205   104: 0.0725757   106: -0.0114607
Row 105:   13: 0.0857548   26: -0.115276   27: -0.055669   33: 0.0851898   72: -0.00726543   73: -0.0141733   105: 0.0739831   106: -0.00665181   108: -0.0146456
Row 106:   25: 0.0908919   26: -0.109063   27: 0.0898276   33: -0.0716564   103: -0.0112623   104: -0.0114607   105: -0.00665181   106: 0.073246   108: -0.0158051
Row 107:   14: 0.0789038   27: -0.0812277   28: -0.067072   36: 0.0693959   75: -0.0107443   76: -0.00898164   107: 0.075271   109: -0.00602369   112: -0.0113253
Row 108:   26: 0.121803   27: -0.0961255   33: -0.113808   36: 0.0881303   105: -0.0146456   106: -0.0158051   108: 0.0736796   109: -0.0138063   122: -0.00822629
Row 109:   27: -0.142519   28: 0.108436   33: 0.113403   36: -0.0793199   107: -0.00602369   108: -0.0138063   109: 0.0750113   112: -0.0210853   122: -0.0145445
Row 110:   15: 0.0740994   28: -0.0602816   29: -0.089167   34: 0.0753492   77: -0.0133608   78: -0.00516409   110: 0.0754113   111: -0.00893099   113: -0.0099063
Row 111:   28: -0.10505   29: 0.109101   34: -0.0906772   36: 0.0866269   110: -0.00893099   111: 0.0738563   112: -0.0137383   113: -0.0183442   123: -0.00791843
Row 112:   27: 0.129642   28: -0.144413   34: 0.115025   36: -0.100254   107: -0.0113253   109: -0.0210853   111: -0.0137383   112: 0.075109   123: -0.0150181
Row 113:   17: 0.0842313   28: 0.113002   29: -0.118121   34: -0.0791125   82: -0.00987183   84: -0.011186   110: -0.0099063   111: -0.0183442   113: 0.0736066
Row 114:   20: 0.0880834   30: -0.0957807   32: -0.0777241   34: 0.0854215   90: -0.0116772   91: -0.0103437   114: 0.0729866   115: -0.00775388   119: -0.0136015
Row 115:   17: 0.0758868   30: -0.0932702   32: 0.0925576   34: -0.0751743   83: -0.0110397   84: -0.00793202   114: -0.00775388   115: 0.0739746   119: -0.0153855
Row 116:   21: 0.0945164   31: -0.0929254   32: -0.082857   36: 0.081266   93: -0.00777561   94: -0.0158535   116: 0.0737618   118: -0.0129387   120: -0.00737784
Row 117:   23: 0.0759167   31: -0.0362641   35: -0.107555   36: 0.0679026   98: -0.0127451   99: -0.00623403   117: 0.0778452   118: -0.0141437   124: -0.002832
Row 118:   31: -0.159491   32: 0.118413   35: 0.149407   36: -0.108329   116: -0.0129387   117: -0.0141437   118: 0.077165   120: -0.0166647   124: -0.0232081
Row 119:   30: 0.115948   32: -0.114227   34: -0.106008   36: 0.104287   114: -0.0136015   115: -0.0153855   119: 0.0729428   120: -0.0129004   123: -0.0131713
Row 120:   31: 0.0961702   32: -0.10718   34: 0.0921225   36: -0.081113   116: -0.00737784   118: -0.0166647   119: -0.0129004   120: 0.0731832   123: -0.0101302
Row 121:   24: 0.0879389   33: -0.0604965   35: -0.102917   36: 0.0754744   101: -0.016396   102: -0.00558875   121: 0.0747136   122: -0.00933324   124: -0.00953537
Row 122:   27: 0.0910832   33: -0.131322   35: 0.110477   36: -0.0702381   108: -0.00822629   109: -0.0145445   121: -0.00933324   122: 0.0737317   124: -0.018286
Row 123:   28: 0.0917459   32: 0.0932062   34: -0.100593   36: -0.084359   111: -0.00791843   112: -0.0150181   119: -0.0131713   120: -0.0101302   123: 0.0728767
Row 124:   31: 0.10416   33: 0.111286   35: -0.165977   36: -0.0494695   117: -0.002832   118: -0.0232081   121: -0.00953537   122: -0.018286   124: 0.0773384

6. Solve the system:

[10]:
gfu.vec.data = \
    a.mat.Inverse(freedofs=fes.FreeDofs()) * f.vec
Draw(gfu)
[10]:
BaseWebGuiScene

The Dirichlet boundary condition constrains some degrees of freedom. The argument fes.FreeDofs() indicates that only the remaining “free” degrees of freedom should participate in the linear solve.

You can examine the coefficient vector of solution if needed:

[11]:
print(gfu.vec)
       0
       0
       0
 0.0923003
       0
       0
       0
       0
       0
       0
       0
       0
 0.0578963
 0.0863378
 0.0954043
 0.0944885
 0.0888514
 0.0779852
 0.0596341
 0.0330681
 0.0360787
 0.037316
 0.0325369
 0.0418652
 0.0445357
 0.0474396
 0.0755392
 0.0894102
 0.0924353
 0.0900805
 0.0610257
 0.0590117
 0.0639013
 0.0736543
 0.0809406
 0.0652939
 0.0809321
       0
 -0.00575858
       0
       0
       0
 -0.0350907
 0.00263511
 -0.00722838
 -0.00529619
       0
 -0.00991716
 -0.00628959
       0
 -0.0163492
 -0.0123264
       0
 -0.0151224
 -0.0244265
 -0.0872104
 -0.00757595
       0
 -0.0535158
 -0.00798349
       0
 -0.0380047
 -0.0140984
       0
 -0.0275011
 -0.0180975
 -0.0333814
 -0.0243562
 -0.0242978
 -0.00435856
 -0.0108133
 -0.014613
 -0.00632623
 -0.00765274
 -0.00565419
 -0.00897655
 -0.00777747
 -0.00842581
 -0.00753412
 -0.00774811
 0.00263938
 -0.00823644
 -0.00510169
 -0.00532211
 0.00395315
 -0.00825199
 0.00370076
 0.00421692
 -0.00435681
 -0.00368699
 -0.0092949
 -0.0102197
 -0.00997628
 -0.0140086
 -0.0115245
 -0.0213015
 -0.00731494
 -0.00823074
 -0.0213212
 -0.00565518
 -0.00319583
 -0.0139782
 -0.0188197
 -0.0144226
 -0.0217368
 -0.0142698
 -0.00416346
 -0.00959546
 -0.0103297
 -0.00989169
 -0.00229709
 -0.0091171
 -0.0100331
 -0.00695374
 -0.00194445
 -0.00844938
 -0.00903942
 -0.0111037
 -0.0102999
 -0.0090134
 -0.0131175
 -0.00427374
 -0.0185946
 -0.00885348
 -0.0126483


Ways to interact with NGSolve

  • A jupyter notebook (like this one) gives you one way to interact with NGSolve. When you have a complex sequence of tasks to perform, the notebook may not be adequate.

  • You can write an entire python module in a text editor and call python on the command line. (A script of the above is provided in poisson.py.) python3 poisson.py

  • If you want the Netgen GUI, then use netgen on the command line: netgen poisson.py You can then ask for a python shell from the GUI’s menu options (Solve -> Python shell).

[ ]: