This page was generated from unit-9.2-C++Assemble/cppassembling.ipynb.
9.2 Implement our own system assembling¶
In this tutorial we
write an integrators for \(\int_T f v dx\) and \(\int_T \nabla u \nabla v dx\): myIntegrator.hpp myIntegrator.cpp
put together element matrices to the global system matrix: myAssembling.cpp
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import unit_square
from ngsolve.fem import CompilePythonModule
from pathlib import Path
m = CompilePythonModule(Path('myassemblemodule.cpp'), init_function_name='mymodule')
dir (m)
[1]:
['MyAssembleMatrix',
'MyLaplace',
'MySource',
'__doc__',
'__loader__',
'__name__',
'__package__',
'__spec__']
[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
fes = H1(mesh, order=3, dirichlet=".*")
u, v = fes.TnT()
use our own integrators for element matrix calculation:¶
[3]:
a = BilinearForm(fes)
a += m.MyLaplace(CF(1))
a.Assemble()
f = LinearForm(fes)
f += m.MySource(x)
f.Assemble();
[4]:
gfu = GridFunction(fes)
gfu.vec.data = a.mat.Inverse(fes.FreeDofs()) * f.vec
Draw (gfu);
use our own matrix assembling function:¶
[5]:
for l in range(4): mesh.Refine()
fes.Update()
gfu.Update()
f.Assemble();
[6]:
with TaskManager(pajetrace=10**8):
# using our integrator
mymatrix = m.MyAssembleMatrix(fes, m.MyLaplace(CF(1)), parallel=True)
# using NGSolve built-in symbolic integrator
# integrator = BilinearForm(grad(u)*grad(v)*dx).integrators[0]
# mymatrix = m.MyAssembleMatrix(fes, integrator, parallel=True)
# print ("my matrix = ", mymat)
if fes.ndof < 100000:
gfu.vec.data = mymatrix.Inverse(fes.FreeDofs()) * f.vec
Draw (gfu);
We assemble matrix
parallel assembling
[7]:
from ngsolve.ngstd import Timers
for t in Timers():
if t["name"].startswith("MyAssemble"):
print (t["name"]," ", t["time"])
MyAssemble - calc element matrix 0.06088880471137357
MyAssemble - assemble matrix 0.02251302538615438
MyAssemble - buildmatrixgraph 0.02521161227278459
[ ]: