7.1 Shape optimization via the shape derivative

In this tutorial we discuss the implementation of shape optimization algorithms to solve

\[\min_{\Omega} J(\Omega) := \int_{\Omega} f(x)\;dx, \quad f\in C^1(\mathbf{R}^d).\]

The analytic solution to this problem is

\[\Omega^*:= \{x\in \mathbf{R}^d:\; f(x)\le 0\}.\]

This problem is solved by fixing an initial guess \(\Omega_0\subset \mathbf{R}^d\) and then considering the problem

\[\min_{X} J((\mbox{id}+X)(\Omega_0)),\]

where \(X:\mathbf{R}^d \to \mathbf{R}^d\) are (at least) Lipschitz vector fields. We approximate \(X\) by a finite element function.

Initial geometry and shape function

We choose \(f\) as

\[\begin{split}\begin{array}{rl} f(x,y) =& \left(\sqrt{(x - a)^2 + b y^2} - 1 \right) \left(\sqrt{(x + a)^2 + b y^2} - 1 \right) \\ & \left(\sqrt{b x^2 + (y - a)^2} - 1 \right) \left(\sqrt{b x^2 + (y + a)^2} - 1 \right) - \varepsilon. \end{array}\end{split}\]

where \(\varepsilon = 0.001, a = 4/5, b = 2\). The corresponding zero level sets of this function are as follows. The green area indicates where \(f\) is negative.

cb354f2267974149b0ce84285ee9506f

Let us set up the geometry.

[1]:
# Generate the geometry
from ngsolve import *

# load Netgen/NGSolve and start the gui
from ngsolve.webgui import Draw
from netgen.geom2d import SplineGeometry

geo = SplineGeometry()
geo.AddCircle((0,0), r = 2.5)

ngmesh = geo.GenerateMesh(maxh = 0.08)
mesh = Mesh(ngmesh)
mesh.Curve(2)
[1]:
<ngsolve.comp.Mesh at 0x7f8c63839e00>
[2]:
#gfset.vec[:]=0
#gfset.Set((0.2*x,0))
#mesh.SetDeformation(gfset)
#scene = Draw(gfzero,mesh,"gfset", deformation = gfset)
[3]:
# define the function f and its gradient
a =4.0/5.0
b = 2
f = CoefficientFunction((sqrt((x - a)**2 + b * y**2) - 1) \
                * (sqrt((x + a)**2 + b * y**2) - 1) \
                * (sqrt(b * x**2 + (y - a)**2) - 1) \
                * (sqrt(b * x**2 + (y + a)**2) - 1) - 0.001)

# gradient of f defined as vector valued coefficient function
grad_f = CoefficientFunction((f.Diff(x),f.Diff(y)))
[4]:
# vector space for shape gradient
VEC = H1(mesh, order=1, dim=2)

# grid function for deformation field
gfset = GridFunction(VEC)
gfX = GridFunction(VEC)

Draw(gfset)
[4]:
BaseWebGuiScene

Shape derivative

\[DJ(\Omega)(X) = \int_\Omega f \mbox{div}(X) + \nabla f\cdot X\;dx\]
[5]:
# Test and trial functions
PHI, PSI = VEC.TnT()

# shape derivative
dJOmega = LinearForm(VEC)
dJOmega += (div(PSI)*f + InnerProduct(grad_f, PSI) )*dx

Bilinear form

\[(\varphi,\psi) \mapsto b_\Omega(\varphi,\psi):= \int_\Omega (\nabla \varphi+\nabla \varphi^\top): \nabla\psi+\varphi\cdot \psi\; dx.\]

to compute the gradient \(X:= \mbox{grad}J(\Omega)\) by

\[b_\Omega(X,\psi) = DJ(\Omega)(\psi)\quad \text{ for all } \quad \psi \in H^1(\Omega)\]
[6]:
# bilinear form for H1 shape gradient; aX represents b_\Omega
aX = BilinearForm(VEC)
aX += InnerProduct(grad(PHI) + grad(PHI).trans, grad(PSI)) * dx
aX += InnerProduct(PHI, PSI) * dx

The first optimisation step

Fix an initial domain \(\Omega_0\) and define

\[\mathcal J_{\Omega_0}(X):= J((\mbox{id} + X)(\Omega_0)).\]

Then we have the following relation between the derivative of \(\mathcal J_{\Omega_0}\) and the shape derivative of \(J\):

\[D\mathcal J_{\Omega_0}(X_n)(X) = DJ((\mbox{id}+X_n)(\Omega_0))(X\circ(\mbox{id}+X_n)^{-1}).\]

Here

  • \((\mbox{id}+X_n)(\Omega_0)\) is current shape

Now we note that \(\varphi \mapsto \varphi\circ(\mbox{id}+X_n)^{-1}\) maps the finite element space on \((\mbox{id}+X_n)(\Omega_0)\) to the finite element space on \(\Omega_0\). Therefore the following are equvalent:

  • assembling \(\varphi \mapsto D\mathcal J_{\Omega_0}(X_n)(\varphi)\) on the fixed domain \(\Omega_0\)

  • assembling \(\varphi \mapsto DJ((\mbox{id}+X_n)(\Omega_0))(\varphi)\) on the deformed domain \((\mbox{id}+X_n)(\Omega_0)\).

[7]:
# deform current domain with gfset
mesh.SetDeformation(gfset)

# assemble on deformed domain
aX.Assemble()
dJOmega.Assemble()

mesh.UnsetDeformation()
# unset deformation

Now let’s make one optimization step with step size \(\alpha_1>0\):

\[\Omega_1 = (\mbox{id} - \alpha_1 X_0)(\Omega_0).\]
[8]:
# compute X_0
gfX.vec.data = aX.mat.Inverse(VEC.FreeDofs(), inverse="sparsecholesky") * dJOmega.vec

print("current cost ", Integrate(f*dx, mesh))
print("Gradient norm ", Norm(gfX.vec))

alpha = 20.0 / Norm(gfX.vec)

gfset.vec[:]=0
scene = Draw(gfset)
# input("A")
gfset.vec.data -= alpha * gfX.vec
mesh.SetDeformation(gfset)
#draw deformed shape
scene.Redraw()
# input("B")

print("cost after gradient step:", Integrate(f, mesh))
mesh.UnsetDeformation()
scene.Redraw()
current cost  63.58544060305382
Gradient norm  442.05184362948427
cost after gradient step: 5.043649318663175

Optimisation loop

Now we can set up an optimisation loop. In the second step we compute

\[\Omega_2 = (\mbox{id} - \alpha_0 X_0 - \alpha_1 X_1)(\Omega_0)\]

by the same procedure as above.

[9]:
import time


iter_max = 50
gfset.vec[:] = 0
mesh.SetDeformation(gfset)
scene = Draw(gfset,mesh,"gfset")

converged = False

alpha =0.11#100.0 / Norm(gfX.vec)
# input("A")
for k in range(iter_max):
    mesh.SetDeformation(gfset)
    scene.Redraw()
    Jold = Integrate(f, mesh)
    print("cost at iteration ", k, ': ', Jold)

    # assemble bilinear form
    aX.Assemble()

    # assemble shape derivative
    dJOmega.Assemble()

    mesh.UnsetDeformation()

    gfX.vec.data = aX.mat.Inverse(VEC.FreeDofs(), inverse="sparsecholesky") * dJOmega.vec

    # step size control

    gfset_old = gfset.vec.CreateVector()
    gfset_old.data = gfset.vec

    Jnew = Jold + 1
    while Jnew > Jold:

        gfset.vec.data = gfset_old
        gfset.vec.data -= alpha * gfX.vec

        mesh.SetDeformation(gfset)

        Jnew = Integrate(f, mesh)

        mesh.UnsetDeformation()

        if Jnew > Jold:
            print("reducing step size")
            alpha = 0.9*alpha
        else:
            print("linesearch step accepted")
            alpha = alpha*1.5
            break

    print("step size: ", alpha, '\n')

    time.sleep(0.1)
    Jold = Jnew

cost at iteration  0 :  63.58544060305382
linesearch step accepted
step size:  0.165

cost at iteration  1 :  -0.7382553000138545
linesearch step accepted
step size:  0.2475

cost at iteration  2 :  -0.8176876285984291
linesearch step accepted
step size:  0.37124999999999997

cost at iteration  3 :  -0.9325785868476248
linesearch step accepted
step size:  0.556875

cost at iteration  4 :  -1.0701613164084456
linesearch step accepted
step size:  0.8353125

cost at iteration  5 :  -1.1521934750329594
linesearch step accepted
step size:  1.25296875

cost at iteration  6 :  -1.1547483082895464
reducing step size
reducing step size
linesearch step accepted
step size:  1.52235703125

cost at iteration  7 :  -1.154955094622594
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.4982276723046877

cost at iteration  8 :  -1.1550472206937452
reducing step size
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.3270326873287925

cost at iteration  9 :  -1.155453494676608
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.4511102435940346

cost at iteration  10 :  -1.1555977964371116
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.4281101462330694

cost at iteration  11 :  -1.1556257735480633
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.4054746004152756

cost at iteration  12 :  -1.1558550657345563
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.3831978279986936

cost at iteration  13 :  -1.1559610148052597
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.3612741424249144

cost at iteration  14 :  -1.1561635400235297
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.3396979472674797

cost at iteration  15 :  -1.156193676380524
reducing step size
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.1866173613229614

cost at iteration  16 :  -1.156357024476493
reducing step size
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0510285285313932

cost at iteration  17 :  -1.156434437642301
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.034369726354171

cost at iteration  18 :  -1.1564637024518876
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0179749661914572

cost at iteration  19 :  -1.1564751304725112
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0018400629773228

cost at iteration  20 :  -1.156511537322834
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9859608979791321

cost at iteration  21 :  -1.156564232383649
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9703334177461629

cost at iteration  22 :  -1.1566297010931148
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9549536330748863

cost at iteration  23 :  -1.1566995703949992
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9398176179906492

cost at iteration  24 :  -1.156765520852471
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.027690565272775

cost at iteration  25 :  -1.1567676713081918
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0114016698132016

cost at iteration  26 :  -1.1567784490425266
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9953709533466624

cost at iteration  27 :  -1.156798428862847
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9795943237361178

cost at iteration  28 :  -1.1568250029634704
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9640677537049005

cost at iteration  29 :  -1.1568556930569593
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9487872798086778

cost at iteration  30 :  -1.1568865442400496
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9337490014237104

cost at iteration  31 :  -1.1569150632990812
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0210545330568275

cost at iteration  32 :  -1.1569198549179136
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0048708187078768

cost at iteration  33 :  -1.15692778724364
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.988943616231357

cost at iteration  34 :  -1.156938362321561
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.97326885991409

cost at iteration  35 :  -1.1569509591157165
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9578425484844518

cost at iteration  36 :  -1.1569642145231311
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.047400826767748

cost at iteration  37 :  -1.1569647976305986
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0307995236634793

cost at iteration  38 :  -1.1569668723577835
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0144613512134133

cost at iteration  39 :  -1.156971132204393
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9983821387966807

cost at iteration  40 :  -1.156977460360057
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9825577818967535

cost at iteration  41 :  -1.1569856919266508
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.96698424105369

cost at iteration  42 :  -1.1569949177533807
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9516575408329891

cost at iteration  43 :  -1.1570044550911744
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0406375209008738

cost at iteration  44 :  -1.1570056477226338
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0241434161945948

cost at iteration  45 :  -1.1570079849271222
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.0079107430479106

cost at iteration  46 :  -1.1570115458839176
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9919353577706012

cost at iteration  47 :  -1.1570164247726291
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9762131823499371

cost at iteration  48 :  -1.1570221572034933
reducing step size
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  0.9607402034096908

cost at iteration  49 :  -1.1570284025356303
reducing step size
reducing step size
reducing step size
linesearch step accepted
step size:  1.050569412428497

Using SciPy optimize toolbox

We use the package scipy.optimize and wrap the shape functions around it.

We first setup the initial geometry as a circle of radius r = 2.5 (as before)

[10]:
# The code in this cell is the same as in the example above.

from ngsolve import *
from ngsolve.webgui import Draw
from netgen.geom2d import SplineGeometry

import numpy as np

ngsglobals.msg_level = 1

geo = SplineGeometry()
geo.AddCircle((0,0), r = 2.5)

ngmesh = geo.GenerateMesh(maxh = 0.08)
mesh = Mesh(ngmesh)
mesh.Curve(2)

# define the function f

a =4.0/5.0
b = 2
f = CoefficientFunction((sqrt((x - a)**2 + b * y**2) - 1) \
                * (sqrt((x + a)**2 + b * y**2) - 1) \
                * (sqrt(b * x**2 + (y - a)**2) - 1) \
                * (sqrt(b * x**2 + (y + a)**2) - 1) - 0.001)

# Now we define the finite element space VEC in which we compute the shape gradient

# element order
order = 1

VEC = H1(mesh, order=order, dim=2)

# define test and trial functions
PHI = VEC.TrialFunction()
PSI = VEC.TestFunction()


# define grid function for deformation of mesh
gfset = GridFunction(VEC)
gfset.Set((0,0))

# only for new gui
#scene = Draw(gfset, mesh, "gfset")

#if scene:
#    scene.setDeformation(True)

# plot the mesh and visualise deformation
#Draw(gfset,mesh,"gfset")
#SetVisualization (deformation=True)
 Generate Mesh from spline geometry
 Curve elements, order = 2

Shape derivative

\[DJ(\Omega)(X) = \int_\Omega f \mbox{div}(X) + \nabla f\cdot X\;dx\]
[11]:
fX = LinearForm(VEC)

# analytic shape derivative
fX += f*div(PSI)*dx + (f.Diff(x,PSI[0])) *dx + (f.Diff(y,PSI[1])) *dx

Bilinear form for shape gradient

Define the bilinear form

\[(\varphi,\psi) \mapsto b_\Omega(\varphi,\psi):= \int_\Omega (\nabla \varphi+\nabla \varphi^\top): \nabla\psi + \varphi\cdot\psi\; dx\]

to compute the gradient \(X =: \mbox{grad}J\) by

\[b_\Omega(X,\psi) = DJ(\Omega)(\psi)\quad \text{ for all } \psi\in H^1(\Omega)\]
[12]:
# Cauchy-Riemann descent CR
CR = False

# bilinear form for gradient
aX = BilinearForm(VEC)
aX += InnerProduct(grad(PHI)+grad(PHI).trans, grad(PSI))*dx + InnerProduct(PHI,PSI)*dx

## Cauchy-Riemann regularisation

if CR == True:
    gamma = 100
    aX += gamma * (PHI.Deriv()[0,0] - PHI.Deriv()[1,1])*(PSI.Deriv()[0,0] - PSI.Deriv()[1,1]) *dx
    aX += gamma * (PHI.Deriv()[1,0] + PHI.Deriv()[0,1])*(PSI.Deriv()[1,0] + PSI.Deriv()[0,1]) *dx


aX.Assemble()
invaX = aX.mat.Inverse(VEC.FreeDofs(), inverse="sparsecholesky")

gfX = GridFunction(VEC)

Wrapping the shape function and its gradient

Now we define the shape function \(J\) and its gradient grad(J) use the shape derivative \(DJ\). The arguments of \(J\) and grad(J) are vector in \(\mathbf{R}^d\), where \(d\) is the dimension of the finite element space.

[13]:
def J(x_):

    gfset.Set((0,0))
    # x_ NumPy vector
    gfset.vec.FV().NumPy()[:] += x_

    mesh.SetDeformation(gfset)

    cost_c = Integrate (f, mesh)

    mesh.UnsetDeformation()

    Redraw(blocking=True)

    return cost_c

def gradJ(x_, euclid = False):

    gfset.Set((0,0))
    # x_ NumPy vector
    gfset.vec.FV().NumPy()[:] += x_

    mesh.SetDeformation(gfset)

    fX.Assemble()

    mesh.UnsetDeformation()

    if euclid == True:
        gfX.vec.data = fX.vec
    else:
        gfX.vec.data = invaX * fX.vec

    return gfX.vec.FV().NumPy().copy()

Gradient descent and Armijo rule

We use the functions \(J\) and grad J to define a steepest descent method.We use scipy.optimize.line_search_armijo to compute the step size in each iteration. The Arjmijo rule reads

\[J((\mbox{Id}+\alpha_k X_k)(\Omega_k)) \le J(\Omega_k) - c_1 \alpha_k \|\nabla J(\Omega_k)\|^2,\]

where \(c_1:= 1e-4\) and \(\alpha_k\) is the step size.

[14]:
# import scipy linesearch method
from scipy.optimize.linesearch import line_search_armijo

def gradient_descent(x0, J_, gradJ_):

    xk_ = np.copy(x0)

    # maximal iteration
    it_max = 50
    # count number of function evals
    nfval_total = 0

    print('\n')
    for i in range(1, it_max):

        # Compute a step size using a line_search to satisfy the Wolf
        # compute shape gradient grad J
        grad_xk = gradJ_(xk_,euclid = False)

        # compute descent direction
        pk = -gradJ_(xk_)

        # eval cost function
        fold = J_(xk_)

        # perform armijo stepsize

        if CR == True:
            alpha0 = 0.15
        else:
            alpha0 = 0.11



        step, nfval, b = line_search_armijo(J_, xk_, pk = pk, gfk = grad_xk, old_fval = fold, c1=1e-4, alpha0 = alpha0)
        nfval_total += nfval

        # update the shape and print cost and gradient norm
        xk_ = xk_ - step * grad_xk
        print('Iteration ', i, '| Cost ', fold, '| grad norm', np.linalg.norm(grad_xk))

        mesh.SetDeformation(gfset)
        scene.Redraw()
        mesh.UnsetDeformation()

        if np.linalg.norm(gradJ_(xk_)) < 1e-4:

            #print('#######################################')
            print('\n'+'{:<20}  {:<12} '.format("##################################", ""))
            print('{:<20}  {:<12} '.format("### success - accuracy reached ###", ""))
            print('{:<20}  {:<12} '.format("##################################", ""))
            print('{:<20}  {:<12} '.format("gradient norm: ", np.linalg.norm(gradJ_(xk_))))
            print('{:<20}  {:<12} '.format("n evals f: ", nfval_total))
            print('{:<20}  {:<12} '.format("f val: ", fold) + '\n')
            break
        elif i == it_max-1:

            #print('######################################')
            print('\n'+'{:<20}  {:<12} '.format("#######################", ""))
            print('{:<20}  {:<12} '.format("### maxiter reached ###", ""))
            print('{:<20}  {:<12} '.format("#######################", ""))
            print('{:<20}  {:<12} '.format("gradient norm: ", np.linalg.norm(gradJ_(xk_))))
            print('{:<20}  {:<12} '.format("n evals f: ", nfval_total))
            print('{:<20}  {:<12} '.format("f val: ", fold) + '\n')

Now we are ready to run our first optimisation algorithm:

[15]:
gfset.vec[:]=0
x0 = gfset.vec.FV().NumPy() # initial guess = 0
scene = Draw(gfset, mesh, "gfset")
gradient_descent(x0, J, gradJ)


Iteration  1 | Cost  63.58544060305382 | grad norm 442.05184362948427
Iteration  2 | Cost  -0.7382553000138548 | grad norm 4.797321601018455
Iteration  3 | Cost  -0.7857735477702836 | grad norm 4.812294575740791
Iteration  4 | Cost  -0.8340109759042181 | grad norm 4.780144423275227
Iteration  5 | Cost  -0.881983893823349 | grad norm 4.692239115470677
Iteration  6 | Cost  -0.9285224314563473 | grad norm 4.5416445721269705
Iteration  7 | Cost  -0.9723566047005454 | grad norm 4.324713174006836
Iteration  8 | Cost  -1.0122540076018296 | grad norm 4.0426845384291346
Iteration  9 | Cost  -1.0471892473177822 | grad norm 3.7026495061938505
Iteration  10 | Cost  -1.0765050767054933 | grad norm 3.3181634341605646
Iteration  11 | Cost  -1.1000167253818887 | grad norm 2.90732492212311
Iteration  12 | Cost  -1.1180154448826773 | grad norm 2.490754022058955
Iteration  13 | Cost  -1.1311721937086696 | grad norm 2.0883910113681714
Iteration  14 | Cost  -1.140374856628482 | grad norm 1.716495522576629
Iteration  15 | Cost  -1.1465562052233915 | grad norm 1.3862619992896077
Iteration  16 | Cost  -1.150562263853099 | grad norm 1.1029047823734224
Iteration  17 | Cost  -1.1530807854465164 | grad norm 0.8667776120942267
Iteration  18 | Cost  -1.1546254652064152 | grad norm 0.6747350037169477
Iteration  19 | Cost  -1.155555089885781 | grad norm 0.521601956642585
Iteration  20 | Cost  -1.15610728312894 | grad norm 0.4014078557589178
Iteration  21 | Cost  -1.1564329962973245 | grad norm 0.3082390241864366
Iteration  22 | Cost  -1.1566250721363829 | grad norm 0.236729388003623
Iteration  23 | Cost  -1.1567392179253135 | grad norm 0.18227782886365923
Iteration  24 | Cost  -1.1568082424509445 | grad norm 0.14108836193150684
Iteration  25 | Cost  -1.1568512059762208 | grad norm 0.11011137545386489
Iteration  26 | Cost  -1.1568790758609946 | grad norm 0.08694123443763045
Iteration  27 | Cost  -1.1568981259972182 | grad norm 0.06970013095634099
Iteration  28 | Cost  -1.1569119356095627 | grad norm 0.05693106530543911
Iteration  29 | Cost  -1.1569225483311438 | grad norm 0.04750596065756907
Iteration  30 | Cost  -1.1569311374304097 | grad norm 0.040553631098362235
Iteration  31 | Cost  -1.156938383007384 | grad norm 0.03540610663423864
Iteration  32 | Cost  -1.1569446865801067 | grad norm 0.03155866160652364
Iteration  33 | Cost  -1.1569502911220542 | grad norm 0.028637951437263578
Iteration  34 | Cost  -1.156955349068707 | grad norm 0.026374404372481768
Iteration  35 | Cost  -1.1569599604966179 | grad norm 0.024577686706996647
Iteration  36 | Cost  -1.156964194534456 | grad norm 0.023115688255964162
Iteration  37 | Cost  -1.156968101815988 | grad norm 0.021897623641615804
Iteration  38 | Cost  -1.1569717214195943 | grad norm 0.020861264507975198
Iteration  39 | Cost  -1.1569750846830889 | grad norm 0.019963767959634886
Iteration  40 | Cost  -1.156978217692618 | grad norm 0.019175836787548774
Iteration  41 | Cost  -1.1569811421514762 | grad norm 0.01847543606004201
Iteration  42 | Cost  -1.1569838777622021 | grad norm 0.017849514376677995
Iteration  43 | Cost  -1.1569864401815315 | grad norm 0.017283661655752045
Iteration  44 | Cost  -1.1569888459059847 | grad norm 0.016770895179239378
Iteration  45 | Cost  -1.156991108604262 | grad norm 0.016304608148209974
Iteration  46 | Cost  -1.1569932403960685 | grad norm 0.01587952159300805
Iteration  47 | Cost  -1.1569952522869715 | grad norm 0.015492096337398344
Iteration  48 | Cost  -1.1569971536572254 | grad norm 0.015137178273958808
Iteration  49 | Cost  -1.1569989538206762 | grad norm 0.014812385966536876

#######################
### maxiter reached ###
#######################
gradient norm:        0.014515001787420401
n evals f:            49
f val:                -1.1569989538206762

L-BFGS method

Now we use the L-BFGS method provided by SciPy. The BFGS method requires the shape function \(J\) and its gradient grad J. We can also specify additional arguments in options, such as maximal iterations and the gradient tolerance.

In the BFGS method we replace

\[b_\Omega(X,\varphi) = \nabla J(\Omega)(\varphi)\]

by

\[H_\Omega(X,\varphi) = \nabla J(\Omega)(\varphi),\]

where \(H_\Omega\) is an approximation of the second shape derivative at \(\Omega\). On the discrete level we solve

\[\begin{split}\begin{array}{rl} \text{ solve }\quad B_nX_k & = \nabla J(\Omega_k) \\ & \\ \text{ update } \quad s_k & := -\alpha_k p_k \\ y_k & := \nabla J_h(\Omega_{k+1}) - \nabla J_h(\Omega_k) \\ B_{k+1} &:= B_k + \frac{y_k\otimes y_k}{y_k\cdot s_k} + \frac{B_ks_k\otimes B_ks_k}{B_ky_k\cdot B_ks_k}. \end{array}\end{split}\]
[16]:
from scipy.optimize import minimize

x0 = gfset.vec.FV().NumPy()

# options for optimiser

options = {"maxiter":1000,
              "disp":True,
              "gtol":1e-10}

# we use quasi-Newton method L-BFGS
minimize(J, x0, method='L-BFGS-B', jac=gradJ, options=options)

RUNNING THE L-BFGS-B CODE

           * * *

Machine precision = 2.220D-16
 N =         7784     M =           10
 This problem is unconstrained.

At X0         0 variables are exactly at the bounds

At iterate    0    f= -1.15700D+00    |proj g|=  9.63930D-04

At iterate    1    f= -1.15700D+00    |proj g|=  1.78236D-03

At iterate    2    f= -1.15703D+00    |proj g|=  1.16772D-03

At iterate    3    f= -1.15706D+00    |proj g|=  3.35736D-03
  ys=-2.003E-04  -gs= 2.740E-03 BFGS update SKIPPED

At iterate    4    f= -1.15707D+00    |proj g|=  2.24781D-03

At iterate    5    f= -1.15709D+00    |proj g|=  9.32024D-04

At iterate    6    f= -1.15709D+00    |proj g|=  1.21605D-03

At iterate    7    f= -1.15709D+00    |proj g|=  1.26745D-03

At iterate    8    f= -1.15709D+00    |proj g|=  1.29862D-03

At iterate    9    f= -1.15709D+00    |proj g|=  1.33023D-03

 Bad direction in the line search;
   refresh the lbfgs memory and restart the iteration.

At iterate   10    f= -1.15710D+00    |proj g|=  1.52938D-03

At iterate   11    f= -1.15710D+00    |proj g|=  4.54617D-04

At iterate   12    f= -1.15710D+00    |proj g|=  4.52943D-04

At iterate   13    f= -1.15711D+00    |proj g|=  7.05745D-04

At iterate   14    f= -1.15711D+00    |proj g|=  7.05745D-04
[16]:
      fun: -1.1571110014730501
 hess_inv: <7784x7784 LbfgsInvHessProduct with dtype=float64>
      jac: array([ 2.14530782e-06, -6.07237181e-04,  6.13396109e-04, ...,
       -5.29467877e-06,  6.19934625e-06, -5.11621928e-06])
  message: b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
     nfev: 108
      nit: 14
   status: 0
  success: True
        x: array([-5.01427824e-04,  6.98499222e-01, -6.98449755e-01, ...,
        4.66153980e-03, -1.54412643e-03,  4.61902413e-03])

           * * *

Tit   = total number of iterations
Tnf   = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip  = number of BFGS updates skipped
Nact  = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F     = final function value

           * * *

   N    Tit     Tnf  Tnint  Skip  Nact     Projg        F
 7784     14    108      2     1     0   7.057D-04  -1.157D+00
  F =  -1.1571110014730501

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

 Warning:  more than 10 function and gradient
   evaluations in the last line search.  Termination
   may possibly be caused by a bad search direction.

 Cauchy                time 3.357E-04 seconds.
 Subspace minimization time 5.630E-03 seconds.
 Line search           time 2.599E+01 seconds.

 Total User time 2.625E+01 seconds.

Improving mesh quality via Cauchy-Riemann equations

In the previous section we computed the shape gradient grad J:= X of \(J\) at \(\Omega\) via

\[\int_{\Omega} \nabla X : \nabla \varphi + X\cdot \varphi\; dx = DJ(\Omega)(\varphi) \quad \forall \varphi \in H^1(\Omega)^d.\]

This may lead to overly streched or even degenerated triangles. One way to improve this is to modify the above equation by

\[\int_{\Omega} \nabla X : \nabla \varphi + X\cdot \varphi + \color{red}\gamma \color{red}B\color{red}X\cdot \color{red}B\color{red}\varphi\;dx = DJ(\Omega)(\varphi) \; \forall \varphi \in H^1(\Omega)^d,\]

where

\[\begin{split}B := \begin{pmatrix} -\partial_x & \partial_y \\ \partial_y & \partial_x \end{pmatrix}\end{split}\]

The two equations \(BX = 0\) are precisely the Cauchy-Riemann equations \(-\partial_x X_1 + \partial_y X_2=0\) and \(\partial_y X_1 + \partial_x X_2\). So the bigger \(\gamma\) the more angle preserving is the gradient. So by adding the B term we enforce conformaty with strengh \(\gamma\).

This only means we need to add the \(\alpha\) term to the above bilinear form aX:

[17]:
alpha = 100

aX += alpha * (PHI.Deriv()[0,0] - PHI.Deriv()[1,1])*(PSI.Deriv()[0,0] - PSI.Deriv()[1,1]) *dx
aX += alpha * (PHI.Deriv()[1,0] + PHI.Deriv()[0,1])*(PSI.Deriv()[1,0] + PSI.Deriv()[0,1]) *dx
[ ]: