This page was generated from wta/navierstokes.ipynb.
Navier Stokes Equations¶
Find velocity \(u : \Omega \times [0,T] \rightarrow R^d\) and pressure \(p : \Omega \times [0,T] \rightarrow R\) such that
\[\begin{split}\begin{array}{ccccl}
\frac{\partial u}{\partial t} - \nu \Delta u + u \nabla u & + & \nabla p & = & f \\
\operatorname{div} u & & & = & 0
\end{array}\end{split}\]
[1]:
from ngsolve import *
from ngsolve.webgui import Draw
Schäfer-Turek benchmark geometry:
[2]:
# from netgen.geom2d import SplineGeometry
# geo = SplineGeometry()
# geo.AddRectangle( (0, 0), (2, 0.41), bcs = ("wall", "outlet", "wall", "inlet"))
# geo.AddCircle ( (0.2, 0.2), r=0.05, leftdomain=0, rightdomain=1, bc="cyl", maxh=0.02)
# mesh = Mesh(geo.GenerateMesh(maxh=0.07))
#
# mesh.Curve(3)
# Draw(mesh);
[3]:
from netgen.occ import *
from netgen.webgui import Draw as DrawGeo
shape = Rectangle(2,0.41).Circle(0.2,0.2,0.05).Reverse().Face()
shape.edges.name="wall"
shape.edges.Min(X).name="inlet"
shape.edges.Max(X).name="outlet"
DrawGeo (shape)
mesh = Mesh(OCCGeometry(shape, dim=2).GenerateMesh(maxh=0.07)).Curve(3)
Draw (mesh);
Higher order Taylor-Hood element pairing:
[4]:
V = VectorH1(mesh,order=3, dirichlet="wall|cyl|inlet")
Q = H1(mesh,order=2)
X = FESpace([V,Q])
u,p = X.TrialFunction()
v,q = X.TestFunction()
nu = 0.001 # viscosity
stokes = (nu*InnerProduct(grad(u), grad(v))+ \
div(u)*q+div(v)*p - 1e-10*p*q)*dx
a = BilinearForm(stokes).Assemble()
# nothing here ...
f = LinearForm(X).Assemble()
# gridfunction for the solution
gfu = GridFunction(X)
parabolic inflow at inlet:
[5]:
uin = CoefficientFunction( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gfu.components[0].Set(uin, definedon=mesh.Boundaries("inlet"))
# Draw (Norm(gfu.components[0]), mesh, "velocity", sd=3)
Draw (gfu.components[0], mesh, "vel");
solve Stokes problem for initial conditions:
[6]:
inv_stokes = a.mat.Inverse(X.FreeDofs())
res = f.vec.CreateVector()
res.data = f.vec - a.mat*gfu.vec
gfu.vec.data += inv_stokes * res
Draw (gfu.components[0], mesh)
[6]:
BaseWebGuiScene
implicit/explicit time-stepping:
\[\frac{u_{n+1}-u_n}{\tau} - \nu \Delta u_{n+1} + \nabla p_{n+1} = f - u_n \nabla u_n\]
and
\[\operatorname{div} u_{n+1} = 0\]
[7]:
tau = 0.001 # timestep
mstar = BilinearForm(X)
mstar += u*v*dx+tau*stokes
mstar.Assemble()
inv = mstar.mat.Inverse(X.FreeDofs(), inverse="sparsecholesky")
the non-linear convective term \(\int u \nabla u v\)
[8]:
conv = BilinearForm(X, nonassemble = True)
conv += (Grad(u) * u) * v * dx
implicit Euler/explicit Euler splitting method:
[9]:
t = 0; i = 0
tend = 10
gfut = GridFunction(V, multidim=0)
vel = gfu.components[0]
scene = Draw (gfu.components[0], mesh)
with TaskManager():
while t < tend:
conv.Apply (gfu.vec, res)
res.data += a.mat*gfu.vec
gfu.vec.data -= tau * inv * res
t = t + tau; i = i + 1
if i%10 == 0: scene.Redraw()
if i%50 == 0: gfut.AddMultiDimComponent(vel.vec)
In the multidim - GridFunction gfut we have collected several time-steps, which can be animated now by the visualization:
[10]:
Draw (gfut, mesh, interpolate_multidim=True, animate=True);
[ ]: