This page was generated from unit-1.7-helmholtz/helmholtz.ipynb.
1.7 Complex-valued waves¶
In NGSolve finite element spaces can be built and linear systems can be solved over the complex field. This tutorial shows how to compute the solution of the Helmholtz equation with impedance boundary conditions in complex arithmetic. The boundary value problem is to find \(u\) satisfying
\[-\Delta u - \omega^2 u = f\qquad \text{ in } \Omega\]
together with the impedance (outgoing) boundary condition
\[\frac{\partial u }{ \partial n} - i \omega u = 0
\quad \text{ on } \partial \Omega\]
where \(i =\) 1j
is the imaginary unit.
[1]:
import netgen.gui
from ngsolve import *
from netgen.geom2d import SplineGeometry
[2]:
# Geometry
geo = SplineGeometry()
geo.AddCircle((0.5, 0.5), 0.8, bc="outer")
geo.AddRectangle((0.7, 0.3), (0.75, 0.7),
leftdomain=0, rightdomain=1, bc="scat")
mesh = Mesh(geo.GenerateMesh(maxh=0.05))
Declare a complex finite element space¶
[3]:
fes = H1(mesh, order=5, complex=True)
u, v = fes.TnT()
[4]:
# Wavenumber & source
omega = 100
pulse = 1e3*exp(-(100**2)*((x-0.5)*(x-0.5) + (y-0.5)*(y-0.5)))
Draw(pulse, mesh, 'pulse')
Forming the system¶
The weak form for \(u \in H^1\):
\[\int_\Omega\big[ \nabla u \cdot \nabla \bar v - \omega^2 u \bar v \big]
\, dx -
i \,\omega\, \int_{\partial \Omega} u \bar v \, ds = \int_{\Omega} f \bar v\]
for all \(v\) in \(H^1\).
[5]:
# Forms
a = BilinearForm(fes)
a += grad(u)*grad(v)*dx - omega**2*u*v*dx
a += -omega*1j*u*v * ds("outer")
a.Assemble()
f = LinearForm(fes)
f += pulse * v * dx
f.Assemble()
[5]:
<ngsolve.comp.LinearForm at 0x7fee02b6c1b0>
Solve¶
[6]:
gfu = GridFunction(fes, name="u")
gfu.vec.data = a.mat.Inverse() * f.vec
Draw(gfu)
Explore the GUI’s menu options in Visual
tab:
Increase subdivions
Real and imaginary parts
View absolute value
Turn off Autoscale
Turn on Deformation
Turn on Periodic Animation