This page was generated from unit-2.4-Maxwell/Maxwell.ipynb.
2.4 Maxwell’s Equations¶
[Peter Monk: "Finite Elements for Maxwell’s Equations"]
Magnetostatic field generated by a permanent magnet¶
magnetic flux \(B\), magnetic field \(H\), given magnetization \(M\):
Introducing a vector-potential \(A\) such that \(B = \Curl A\), and putting equations together we get
In weak form: Find \(A \in H(\Curl)\) such that
Usually, the permeability \(\mu\) is given as \(\mu = \mu_r \mu_0\), with \(\mu_0 = 4 \pi 10^{-7}\) the permeability of vacuum.
[1]:
from ngsolve import *
from netgen.csg import *
import netgen.gui
Geometric model and meshing of a bar magnet:
[2]:
box = OrthoBrick(Pnt(-3,-3,-3),Pnt(3,3,3)).bc("outer")
magnet = Cylinder(Pnt(-1,0,0),Pnt(1,0,0), 0.3) * OrthoBrick(Pnt(-1,-3,-3),Pnt(1,3,3))
air = box - magnet
geo = CSGeometry()
geo.Add (air.mat("air"), transparent=True)
geo.Add (magnet.mat("magnet").maxh(1), col=(0.3,0.3,0.1))
geo.Draw()
mesh = Mesh(geo.GenerateMesh(maxh=2, curvaturesafety=1))
mesh.Curve(3)
[3]:
mesh.GetMaterials(), mesh.GetBoundaries()
[3]:
(('air', 'magnet'),
('outer',
'outer',
'outer',
'outer',
'outer',
'outer',
'default',
'default',
'default'))
Define space, forms and preconditioner.
To obtain a regular system matrix, we regularize by adding a very small \(L_2\) term.
We solve magnetostatics, so we can gauge by adding and arbitrary gradient field. A cheap possibility is to delete all basis-functions which are gradients (flag 'nograds')
[4]:
fes = HCurl(mesh, order=3, dirichlet="outer", nograds=True)
print ("ndof =", fes.ndof)
u,v = fes.TnT()
from math import pi
mu0 = 4*pi*1e-7
mur = CoefficientFunction( [1000 if mat== "magnet" else 1
for mat in mesh.GetMaterials()])
a = BilinearForm(fes)
a += 1/(mu0*mur)*curl(u)*curl(v)*dx + 1e-8/(mu0*mur)*u*v*dx
c = Preconditioner(a, "bddc")
f = LinearForm(fes)
mag = CoefficientFunction((1,0,0)) * \
CoefficientFunction( [1 if mat == "magnet" else 0 for mat in mesh.GetMaterials()])
f += SymbolicLFI(mag*curl(v), definedon=mesh.Materials("magnet"))
ndof = 25442
Assemble system and setup preconditioner using task-parallelization:
[5]:
with TaskManager():
a.Assemble()
f.Assemble()
Finally, declare GridFunction and solve by preconditioned CG iteration:
[6]:
gfu = GridFunction(fes)
with TaskManager():
solvers.CG(sol=gfu.vec, rhs=f.vec, mat=a.mat, pre=c.mat)
iteration 0 error = 0.004770751268765441
iteration 1 error = 0.002481327439932446
iteration 2 error = 0.0018918095766121902
iteration 3 error = 0.0012587090378891413
iteration 4 error = 0.0011364536233189845
iteration 5 error = 0.0008195457478849483
iteration 6 error = 0.0006060825336657869
iteration 7 error = 0.0004534128861287425
iteration 8 error = 0.0003578513184707288
iteration 9 error = 0.0002319518486090093
iteration 10 error = 0.00015491751841894294
iteration 11 error = 9.808156355275195e-05
iteration 12 error = 7.798886269681492e-05
iteration 13 error = 4.431269578808672e-05
iteration 14 error = 3.282881496334985e-05
iteration 15 error = 2.2920087554376995e-05
iteration 16 error = 1.5012379279908454e-05
iteration 17 error = 1.0290586276555379e-05
iteration 18 error = 6.79740308457373e-06
iteration 19 error = 5.324080434202824e-06
iteration 20 error = 3.0935107810297513e-06
iteration 21 error = 2.2732501299784884e-06
iteration 22 error = 1.5139195317352793e-06
iteration 23 error = 9.976809810274089e-07
iteration 24 error = 6.972869052375714e-07
iteration 25 error = 4.710001624204148e-07
iteration 26 error = 3.08988244601864e-07
iteration 27 error = 2.120121306558187e-07
iteration 28 error = 1.436055495093338e-07
iteration 29 error = 9.438532197220444e-08
iteration 30 error = 6.136548677801782e-08
iteration 31 error = 4.355524469896144e-08
iteration 32 error = 2.9553590126286676e-08
iteration 33 error = 1.9220251662958344e-08
iteration 34 error = 1.2599536581975736e-08
iteration 35 error = 8.491767929667297e-09
iteration 36 error = 6.2672529167497435e-09
iteration 37 error = 5.164725783000605e-09
iteration 38 error = 3.4224440636960708e-09
iteration 39 error = 2.1626840141576985e-09
iteration 40 error = 1.384274662301424e-09
iteration 41 error = 9.570075917842737e-10
iteration 42 error = 6.402260103263805e-10
iteration 43 error = 4.4191180691741335e-10
iteration 44 error = 2.9301221594445957e-10
iteration 45 error = 1.9470519532718081e-10
iteration 46 error = 1.505450820315906e-10
iteration 47 error = 1.0921671694353932e-10
iteration 48 error = 6.907675698538662e-11
iteration 49 error = 4.6140052014079046e-11
iteration 50 error = 2.797958792911731e-11
iteration 51 error = 2.071463826755522e-11
iteration 52 error = 1.3207439579353337e-11
iteration 53 error = 8.90747410276667e-12
iteration 54 error = 5.392263202272066e-12
iteration 55 error = 3.829585501572023e-12
iteration 56 error = 2.3572446493625495e-12
iteration 57 error = 1.561108913116563e-12
iteration 58 error = 1.0214140321973697e-12
iteration 59 error = 6.905124243024786e-13
iteration 60 error = 4.408326046971322e-13
iteration 61 error = 2.90881779764491e-13
iteration 62 error = 1.8750824768181167e-13
iteration 63 error = 1.2560162074418391e-13
iteration 64 error = 1.2202893220337087e-13
iteration 65 error = 6.7115179041768e-14
iteration 66 error = 4.55326927892633e-14
iteration 67 error = 2.845101492136505e-14
iteration 68 error = 1.8541838190338975e-14
iteration 69 error = 1.277923812605076e-14
iteration 70 error = 7.8902353125096e-15
iteration 71 error = 5.392247750068573e-15
iteration 72 error = 3.808595772043099e-15
[7]:
# the vector potential is not supposed to look nice
Draw (gfu, mesh, "vector-potential", draw_surf=False)
Draw (curl(gfu), mesh, "B-field", draw_surf=False)
Draw (1/(mu0*mur)*curl(gfu)-mag, mesh, "H-field", draw_surf=False)