This page was generated from unit-1.1-poisson/poisson.ipynb.

1.1 First NGSolve example

Let us solve the Poisson problem of finding \(u\) satisfying

\[\begin{split}\begin{aligned} -\Delta u & = f && \text { in the unit square}, \\ u & = 0 && \text{ on the bottom and right parts of the boundary}, \\ \frac{\partial u }{\partial n } & = 0 && \text{ on the remaining boundary parts}. \end{aligned}\end{split}\]

Quick steps to solution:

1. Import NGSolve and Netgen Python modules:

[1]:
import netgen.gui
from ngsolve import *
from netgen.geom2d import unit_square

2. Generate an unstructured mesh

[2]:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.2))
mesh.nv, mesh.ne   # number of vertices & elements
[2]:
(39, 56)
  • Here we prescribed a maximal mesh-size of 0.2 using the maxh flag.

  • The mesh can be viewed by switching to the Mesh tab in the Netgen GUI.

3. Declare a finite element space:

[3]:
fes = H1(mesh, order=2, dirichlet="bottom|right")
fes.ndof  # number of unknowns in this space
[3]:
133

Python’s help system displays further documentation.

[4]:
help(fes)
Help on H1 in module ngsolve.comp object:

class H1(FESpace)
 |  An H1-conforming finite element space.
 |
 |  The H1 finite element space consists of continuous and
 |  elemenet-wise polynomial functions. It uses a hierarchical (=modal)
 |  basis built from integrated Legendre polynomials on tensor-product elements,
 |  and Jaboci polynomials on simplicial elements.
 |
 |  Boundary values are well defined. The function can be used directly on the
 |  boundary, using the trace operator is optional.
 |
 |  The H1 space supports variable order, which can be set individually for edges,
 |  faces and cells.
 |
 |  Internal degrees of freedom are declared as local dofs and are eliminated
 |  if static condensation is on.
 |
 |  The wirebasket consists of all vertex dofs. Optionally, one can include the
 |  first (the quadratic bubble) edge basis function, or all edge basis functions
 |  into the wirebasket.
 |
 |   Keyword arguments can be:
 |  order: int = 1
 |    order of finite element space
 |  complex: bool = False
 |    Set if FESpace should be complex
 |  dirichlet: regexpr
 |    Regular expression string defining the dirichlet boundary.
 |    More than one boundary can be combined by the | operator,
 |    i.e.: dirichlet = 'top|right'
 |  definedon: Region or regexpr
 |    FESpace is only defined on specific Region, created with mesh.Materials('regexpr')
 |    or mesh.Boundaries('regexpr'). If given a regexpr, the region is assumed to be
 |    mesh.Materials('regexpr').
 |  dim: int = 1
 |    Create multi dimensional FESpace (i.e. [H1]^3)
 |  dgjumps: bool = False
 |    Enable discontinuous space for DG methods, this flag is needed for DG methods,
 |    since the dofs have a different coupling then and this changes the sparsity
 |    pattern of matrices.
 |  low_order_space: bool = True
 |    Generate a lowest order space together with the high-order space,
 |    needed for some preconditioners.
 |  order_policy: ORDER_POLICY = ORDER_POLICY.OLDSTYLE
 |    CONSTANT .. use the same fixed order for all elements,
 |    NODAL ..... use the same order for nodes of same shape,
 |    VARIBLE ... use an individual order for each edge, face and cell,
 |    OLDSTYLE .. as it used to be for the last decade
 |  wb_withedges: bool = true(3D) / false(2D)
 |    use lowest-order edge dofs for BDDC wirebasket
 |  wb_fulledges: bool = false
 |    use all edge dofs for BDDC wirebasket
 |
 |  Method resolution order:
 |      H1
 |      FESpace
 |      NGS_Object
 |      pybind11_builtins.pybind11_object
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __getstate__(...)
 |      __getstate__(self: ngsolve.comp.FESpace) -> tuple
 |
 |  __init__(...)
 |      __init__(self: ngsolve.comp.H1, mesh: ngsolve.comp.Mesh, autoupdate: bool = False, **kwargs) -> None
 |
 |  __setstate__(...)
 |      __setstate__(self: ngsolve.comp.H1, arg0: tuple) -> None
 |
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |
 |  __flags_doc__(...) from builtins.PyCapsule
 |      __flags_doc__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |
 |  __dict__
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from FESpace:
 |
 |  ApplyM(...)
 |      ApplyM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |      Apply mass-matrix. Available only for L2-like spaces
 |
 |  ConvertL2Operator(...)
 |      ConvertL2Operator(self: ngsolve.comp.FESpace, l2space: ngsolve.comp.FESpace) -> ngsolve.la.BaseMatrix
 |
 |  CouplingType(...)
 |      CouplingType(self: ngsolve.comp.FESpace, dofnr: int) -> ngsolve.comp.COUPLING_TYPE
 |
 |
 |               Get coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |  Elements(...)
 |      Elements(self: ngsolve.comp.FESpace, VOL_or_BND: ngsolve.comp.VorB = VorB.VOL) -> ngsolve.comp.FESpaceElementRange
 |
 |
 |      Returns an iterable range of elements.
 |
 |      Parameters:
 |
 |      VOL_or_BND : ngsolve.comp.VorB
 |        input VOL, BND, BBND,...
 |
 |  FinalizeUpdate(...)
 |      FinalizeUpdate(self: ngsolve.comp.FESpace) -> None
 |
 |      finalize update
 |
 |  FreeDofs(...)
 |      FreeDofs(self: ngsolve.comp.FESpace, coupling: bool = False) -> pyngcore.BitArray
 |
 |
 |
 |      Return BitArray of free (non-Dirichlet) dofs\n
 |      coupling=False ... all free dofs including local dofs\n
 |      coupling=True .... only element-boundary free dofs
 |
 |      Parameters:
 |
 |      coupling : bool
 |        input coupling
 |
 |  GetDofNrs(...)
 |      GetDofNrs(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. GetDofNrs(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |        input element id
 |
 |
 |
 |      2. GetDofNrs(self: ngsolve.comp.FESpace, ni: ngsolve.comp.NodeId) -> tuple
 |
 |
 |
 |      Parameters:
 |
 |      ni : ngsolve.comp.NodeId
 |        input node id
 |
 |  GetDofs(...)
 |      GetDofs(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> pyngcore.BitArray
 |
 |
 |      Returns all degrees of freedom in given region.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  GetFE(...)
 |      GetFE(self: ngsolve.comp.FESpace, ei: ngsolve.comp.ElementId) -> object
 |
 |
 |      Get the finite element to corresponding element id.
 |
 |      Parameters:
 |
 |      ei : ngsolve.comp.ElementId
 |         input element id
 |
 |  GetOrder(...)
 |      GetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId) -> int
 |
 |      return order of node.
 |      by now, only isotropic order is supported here
 |
 |  GetTrace(...)
 |      GetTrace(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  GetTraceTrans(...)
 |      GetTraceTrans(self: ngsolve.comp.FESpace, arg0: ngsolve.comp.FESpace, arg1: ngsolve.la.BaseVector, arg2: ngsolve.la.BaseVector, arg3: bool) -> None
 |
 |  HideAllDofs(...)
 |      HideAllDofs(self: ngsolve.comp.FESpace, component: object = <ngsolve.ngstd.DummyArgument>) -> None
 |
 |      set all visible coupling types to HIDDEN_DOFs (will be overwritten by any Update())
 |
 |  InvM(...)
 |      InvM(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None) -> ngsolve.la.BaseMatrix
 |
 |  Mass(...)
 |      Mass(self: ngsolve.comp.FESpace, rho: ngsolve.fem.CoefficientFunction = None, definedon: Optional[ngsolve.comp.Region] = None) -> ngsolve.la.BaseMatrix
 |
 |  ParallelDofs(...)
 |      ParallelDofs(self: ngsolve.comp.FESpace) -> ngsolve.la.ParallelDofs
 |
 |      Return dof-identification for MPI-distributed meshes
 |
 |  Prolongation(...)
 |      Prolongation(self: ngsolve.comp.FESpace) -> ngmg::Prolongation
 |
 |      Return prolongation operator for use in multi-grid
 |
 |  Range(...)
 |      Range(self: ngsolve.comp.FESpace, component: int) -> ngsolve.ngstd.IntRange
 |
 |
 |               Return interval of dofs of a component of a product space.
 |
 |      Parameters:
 |
 |      component : int
 |        input component
 |
 |  SetCouplingType(...)
 |      SetCouplingType(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetCouplingType(self: ngsolve.comp.FESpace, dofnr: int, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type of a degree of freedom.
 |
 |      Parameters:
 |
 |      dofnr : int
 |        input dof number
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |
 |
 |      2. SetCouplingType(self: ngsolve.comp.FESpace, dofnrs: ngsolve.ngstd.IntRange, coupling_type: ngsolve.comp.COUPLING_TYPE) -> None
 |
 |
 |               Set coupling type for interval of dofs.
 |
 |      Parameters:
 |
 |      dofnrs : Range
 |        range of dofs
 |
 |      coupling_type : ngsolve.comp.COUPLING_TYPE
 |        input coupling type
 |
 |  SetDefinedOn(...)
 |      SetDefinedOn(self: ngsolve.comp.FESpace, region: ngsolve.comp.Region) -> None
 |
 |
 |      Set the regions on which the FESpace is defined.
 |
 |      Parameters:
 |
 |      region : ngsolve.comp.Region
 |        input region
 |
 |  SetOrder(...)
 |      SetOrder(*args, **kwargs)
 |      Overloaded function.
 |
 |      1. SetOrder(self: ngsolve.comp.FESpace, element_type: ngsolve.fem.ET, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      element_type : ngsolve.fem.ET
 |        input element type
 |
 |      order : object
 |        input polynomial order
 |
 |
 |      2. SetOrder(self: ngsolve.comp.FESpace, nodeid: ngsolve.comp.NodeId, order: int) -> None
 |
 |
 |
 |      Parameters:
 |
 |      nodeid : ngsolve.comp.NodeId
 |        input node id
 |
 |      order : int
 |        input polynomial order
 |
 |  SolveM(...)
 |      SolveM(self: ngsolve.comp.FESpace, vec: ngsolve.la.BaseVector, rho: ngsolve.fem.CoefficientFunction = None, definedon: ngsolve.comp.Region = None) -> None
 |
 |
 |               Solve with the mass-matrix. Available only for L2-like spaces.
 |
 |      Parameters:
 |
 |      vec : ngsolve.la.BaseVector
 |        input right hand side vector
 |
 |      rho : ngsolve.fem.CoefficientFunction
 |        input CF
 |
 |  TestFunction(...)
 |      TestFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a testfunction for :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  TnT(...)
 |      TnT(self: ngsolve.comp.FESpace) -> Tuple[object, object]
 |
 |      Return a tuple of trial and testfunction
 |
 |  TraceOperator(...)
 |      TraceOperator(self: ngsolve.comp.FESpace, tracespace: ngsolve.comp.FESpace, average: bool) -> ngsolve.la.BaseMatrix
 |
 |  TrialFunction(...)
 |      TrialFunction(self: ngsolve.comp.FESpace) -> object
 |
 |      Return a proxy to be used as a trialfunction in :any:`Symbolic Integrators<symbolic-integrators>`
 |
 |  Update(...)
 |      Update(self: ngsolve.comp.FESpace) -> None
 |
 |      update space after mesh-refinement
 |
 |  UpdateDofTables(...)
 |      UpdateDofTables(self: ngsolve.comp.FESpace) -> None
 |
 |      update dof-tables after changing polynomial order distribution
 |
 |  __eq__(...)
 |      __eq__(self: ngsolve.comp.FESpace, space: ngsolve.comp.FESpace) -> bool
 |
 |  __str__(...)
 |      __str__(self: ngsolve.comp.FESpace) -> str
 |
 |  __timing__(...)
 |      __timing__(self: ngsolve.comp.FESpace) -> object
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from FESpace:
 |
 |  __special_treated_flags__(...) from builtins.PyCapsule
 |      __special_treated_flags__() -> dict
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from FESpace:
 |
 |  components
 |      Return a list of the components of a product space
 |
 |  couplingtype
 |
 |  dim
 |      multi-dim of FESpace
 |
 |  globalorder
 |      query global order of space
 |
 |  is_complex
 |
 |  loembedding
 |
 |  lospace
 |
 |  mesh
 |      mesh on which the FESpace is created
 |
 |  ndof
 |      number of degrees of freedom
 |
 |  ndofglobal
 |      global number of dofs on MPI-distributed mesh
 |
 |  type
 |      type of finite element space
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from NGS_Object:
 |
 |  __memory__
 |
 |  name
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pybind11_builtins.pybind11_object:
 |
 |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
 |      Create and return a new object.  See help(type) for accurate signature.

4. Declare test function, trial function, and grid function

  • Test and trial function are symbolic objects - called ProxyFunctions - that help you construct bilinear forms (and have no space to hold solutions).

  • GridFunctions, on the other hand, represent functions in the finite element space and contains memory to hold coefficient vectors.

[5]:
u = fes.TrialFunction()  # symbolic object
v = fes.TestFunction()   # symbolic object
gfu = GridFunction(fes)  # solution

Alternately, you can get both the trial and test variables at once:

[6]:
u, v = fes.TnT()

5. Define and assemble linear and bilinear forms:

[7]:
a = BilinearForm(fes, symmetric=True)
a += grad(u)*grad(v)*dx
a.Assemble()

f = LinearForm(fes)
f += x*v*dx
f.Assemble()

You can examine the linear system in more detail:

[8]:
print(f.vec)
 0.000333333
 0.00888574
 0.00633333
 0.00074628
 0.00399953
 0.00769352
 0.0104008
 0.0115294
 0.0150217
 0.0167909
 0.015258
 0.0182768
 0.0211091
 0.0106045
 0.00711336
 0.00320035
 0.000735854
 0.000876249
 0.000529403
 0.00282218
 0.0124495
 0.0182096
 0.0224435
 0.0204234
 0.0317338
 0.0270543
 0.0291603
 0.0187131
 0.0217393
 0.00854715
 0.00505989
 0.0038006
 0.00883394
 0.0205505
 0.0163797
 0.0213793
 0.0150785
 0.0170279
 0.0191555
 -6.66667e-05
 -3.33333e-05
 -0.000526369
 -0.000575033
 -0.00109143
 -0.0008
 -0.000766667
 -8.08556e-05
 -2.24397e-05
 -0.000120589
 -0.000249038
 -0.000218716
 -0.000440093
 -0.000380259
 -0.000572665
 -0.000711098
 -0.000487162
 -0.00080946
 -0.000916707
 -0.000914728
 -0.000944161
 -0.000759221
 -0.00110619
 -0.00127157
 -0.000646306
 -0.0014197
 -0.00131979
 -0.000648788
 -0.00123697
 -0.0012392
 -0.0015957
 -0.00146355
 -0.000469258
 -0.0014082
 -0.00106589
 -0.000437144
 -0.000880349
 -0.000856527
 -0.000190932
 -0.000699086
 -0.000461922
 -0.000315546
 -0.000220954
 -1.64401e-05
 -9.82846e-05
 -8.35917e-05
 -2.64702e-05
 -9.73025e-05
 -0.000122662
 -2.64702e-05
 -0.000105881
 -0.000353264
 -0.00021487
 -0.00066398
 -0.000468351
 -0.00059592
 -0.000843865
 -0.000796408
 -0.000722285
 -0.000922806
 -0.00105484
 -0.000955488
 -0.00104202
 -0.00117171
 -0.00100951
 -0.000963748
 -0.00114996
 -0.000965717
 -0.00092025
 -0.00104152
 -0.00098591
 -0.000825307
 -0.000865806
 -0.000574259
 -0.000880372
 -0.000710639
 -0.000885225
 -0.000308496
 -0.000477574
 -0.000191583
 -0.00032424
 -0.000250767
 -0.000328592
 -0.000559968
 -0.00047995
 -0.000773918
 -0.00082872
 -0.000774775
 -0.000675938
 -0.000761632
 -0.000801479
 -0.000841885
 -0.000775647
 -0.000743459


[9]:
print(a.mat)
Row 0:   0: 1
Row 1:   1: 0.828441
Row 2:   2: 1
Row 3:   3: 0.870927
Row 4:   0: -0.5   4: 1.88347
Row 5:   4: -0.397227   5: 1.77564
Row 6:   5: -0.326749   6: 1.7517
Row 7:   1: -0.208968   6: -0.273913   7: 1.82559
Row 8:   1: -0.209694   8: 1.8809
Row 9:   8: -0.350939   9: 1.74429
Row 10:   9: -0.262838   10: 1.77715
Row 11:   2: -0.5   10: -0.267845   11: 1.9829
Row 12:   2: -0.5   11: -0.115438   12: 1.81266
Row 13:   12: -0.253469   13: 1.79007
Row 14:   13: -0.404897   14: 1.83152
Row 15:   3: -0.344377   14: -0.218833   15: 1.78023
Row 16:   3: -0.336878   16: 1.81347
Row 17:   16: -0.20561   17: 1.94288
Row 18:   17: -0.368349   18: 2.04376
Row 19:   0: -0.5   4: -0.177276   18: -0.553239   19: 1.87497
Row 20:   4: -0.808965   5: -0.345183   19: -0.545937   20: 3.54246
Row 21:   5: -0.706484   6: -0.432506   20: -0.647227   21: 3.50609
Row 22:   6: -0.718531   7: -0.374026   21: -0.571505   22: 3.51428
Row 23:   1: -0.40978   7: -0.968685   8: -1.05698   22: -0.708085   23: 3.76596
Row 24:   8: -0.263291   9: -0.64648   22: -0.536887   23: -0.62243   24: 3.433
Row 25:   9: -0.484029   10: -0.84644   24: -0.459506   25: 3.57375
Row 26:   10: -0.400025   11: -1.09961   12: -0.239874   25: -0.517151   26: 3.71385
Row 27:   12: -0.703881   13: -0.775929   26: -0.788273   27: 3.68527
Row 28:   13: -0.355771   14: -0.309609   27: -0.733256   28: 3.48151
Row 29:   14: -0.898185   15: -0.432178   28: -0.790531   29: 3.74275
Row 30:   3: -0.189673   15: -0.784846   16: -0.908731   29: -0.98463   30: 3.81689
Row 31:   16: -0.36225   17: -1.16439   30: -0.851669   31: 3.85451
Row 32:   17: -0.204537   18: -1.12218   19: -0.098519   20: -0.584699   31: -0.517495   32: 3.69368
Row 33:   21: -0.714154   22: -0.60525   24: -0.354764   33: 3.57925
Row 34:   20: -0.610448   21: -0.43421   32: -0.800343   33: -0.624553   34: 3.5401
Row 35:   25: -0.379385   26: -0.66891   27: -0.683932   28: -0.449095   35: 3.53739
Row 36:   28: -0.434461   29: -0.637229   30: -0.0973365   31: -0.958711   32: -0.365907   34: -0.341534   36: 3.57061
Row 37:   24: -0.549644   25: -0.887236   33: -0.928035   35: -0.674877   37: 3.68681
Row 38:   28: -0.408789   33: -0.352491   34: -0.729009   35: -0.68119   36: -0.735427   37: -0.64702   38: 3.55392
Row 39:   0: -0.0833333   4: 0   19: 0.0833333   39: 0.0416667
Row 40:   0: -0.0833333   4: 0.0833333   19: 0   39: 1.73472e-18   40: 0.0416667
Row 41:   1: -0.0340869   7: -0.0835417   23: 0.117629   41: 0.0381141
Row 42:   1: -0.0342097   8: -0.0831255   23: 0.117335   42: 0.038071
Row 43:   1: -0.069777   7: 0.11837   8: 0.118074   23: -0.166667   41: -0.0208854   42: -0.0207814   43: 0.0761852
Row 44:   2: -0.0833333   11: 0   12: 0.0833333   44: 0.0416667
Row 45:   2: -0.0833333   11: 0.0833333   12: 0   44: 0   45: 0.0416667
Row 46:   3: -0.0173948   15: -0.0795022   30: 0.096897   46: 0.0385733
Row 47:   3: -0.0142173   16: -0.0873491   30: 0.101566   47: 0.0394282
Row 48:   3: -0.113542   15: 0.136898   16: 0.143495   30: -0.166851   46: -0.0198756   47: -0.0218373   48: 0.0780015
Row 49:   4: -0.0535736   5: -0.028366   20: 0.0819397   49: 0.037036
Row 50:   0: 0.166667   4: -0.164587   19: -0.124342   20: 0.122262   39: -0.0208333   40: -0.0208333   50: 0.0796187
Row 51:   4: -0.0957505   5: 0.0945705   19: 0.0705543   20: -0.0693744   49: -0.00709151   50: -0.0102521   51: 0.0749881
Row 52:   5: -0.0526905   6: -0.0380314   21: 0.0907219   52: 0.036295
Row 53:   4: 0.119778   5: -0.131261   20: -0.10714   21: 0.118623   49: -0.0133934   51: -0.0165511   53: 0.073983
Row 54:   5: -0.0836226   6: 0.0924896   20: 0.082731   21: -0.091598   52: -0.00950784   53: -0.0133916   54: 0.073242
Row 55:   6: -0.0573097   7: -0.0420363   22: 0.099346   55: 0.0362495
Row 56:   5: 0.107149   6: -0.116904   21: -0.102619   22: 0.112374   52: -0.0131726   54: -0.0136146   56: 0.0729017
Row 57:   6: -0.0797051   7: 0.0876885   21: 0.0839811   22: -0.0919644   55: -0.0105091   56: -0.012482   57: 0.0728562
Row 58:   6: 0.102962   7: -0.123558   22: -0.111917   23: 0.132513   55: -0.0143274   57: -0.011413   58: 0.0744532
Row 59:   1: 0.0689149   7: -0.0551294   22: 0.0749089   23: -0.0886944   41: -0.00852172   43: -0.008707   58: -0.0136519   59: 0.0763178
Row 60:   8: -0.0322109   9: -0.0557926   24: 0.0880035   60: 0.0366233
Row 61:   1: 0.0691587   8: -0.0466199   23: -0.0901615   24: 0.0676228   42: -0.00855243   43: -0.00873724   61: 0.078236
Row 62:   8: -0.151527   9: 0.114282   23: 0.148989   24: -0.111744   60: -0.0139482   61: -0.013988   62: 0.0767883
Row 63:   9: -0.0342301   10: -0.0697744   25: 0.104004   63: 0.0369527
Row 64:   8: 0.0907008   9: -0.104931   24: -0.0782661   25: 0.0924966   60: -0.00805273   62: -0.0146225   64: 0.072736
Row 65:   9: -0.0957605   10: 0.113581   24: 0.0980093   25: -0.11583   63: -0.0174436   64: -0.0115138   65: 0.0730654
Row 66:   10: -0.0327463   11: -0.0708467   26: 0.103593   66: 0.0370585
Row 67:   9: 0.0780365   10: -0.0777309   25: -0.0772401   26: 0.0769345   63: -0.00855753   65: -0.0109516   67: 0.0740111
Row 68:   10: -0.11594   11: 0.115488   25: 0.114309   26: -0.113857   66: -0.0177117   67: -0.0107525   68: 0.0741168
Row 69:   2: 0.166667   11: -0.195755   12: -0.11965   26: 0.148738   44: -0.0208333   45: -0.0208333   69: 0.0836612
Row 70:   10: 0.0773871   11: -0.0638806   12: 0.0555561   26: -0.0690626   66: -0.00818658   68: -0.0111602   69: -0.00907908   70: 0.079053
Row 71:   12: -0.0432149   13: -0.0598976   27: 0.103112   71: 0.0363393
Row 72:   11: 0.131662   12: -0.0933383   26: -0.198236   27: 0.159913   69: -0.0281055   70: -0.00480994   72: 0.0828885
Row 73:   12: -0.0459076   13: 0.102142   26: 0.0894771   27: -0.145712   71: -0.0149744   72: -0.0214536   73: 0.0772333
Row 74:   13: -0.0406718   14: -0.0388314   28: 0.0795032   74: 0.0367465
Row 75:   12: 0.0854598   13: -0.0608683   27: -0.107402   28: 0.0828109   71: -0.0108037   73: -0.0105612   75: 0.074398
Row 76:   13: -0.136907   14: 0.106314   27: 0.133611   28: -0.103019   74: -0.00970785   75: -0.0160469   76: 0.0748052
Row 77:   14: -0.0683139   15: -0.0424951   29: 0.110809   77: 0.0368203
Row 78:   13: 0.108155   14: -0.148866   28: -0.10339   29: 0.144102   74: -0.010168   76: -0.0168707   78: 0.0759645
Row 79:   14: -0.0492423   15: 0.0789672   28: 0.0754885   29: -0.105213   77: -0.0106238   78: -0.0156796   79: 0.0760383
Row 80:   14: 0.104786   15: -0.0877775   29: -0.135473   30: 0.118465   77: -0.0170785   79: -0.00911803   80: 0.0738201
Row 81:   3: 0.074791   15: -0.0869308   29: 0.0966939   30: -0.0845541   46: -0.00434871   48: -0.014349   80: -0.0167898   81: 0.0755731
Row 82:   16: -0.033994   17: -0.0846663   31: 0.11866   82: 0.0382322
Row 83:   3: 0.0703636   16: -0.0825273   30: -0.0722726   31: 0.0844363   47: -0.00355433   48: -0.0140366   83: 0.0765638
Row 84:   16: -0.0983745   17: 0.118935   30: 0.122161   31: -0.142722   82: -0.0211666   83: -0.0145138   84: 0.0753678
Row 85:   17: -0.0154075   18: -0.0781072   32: 0.0935147   85: 0.0387265
Row 86:   16: 0.0682624   17: -0.0529503   31: -0.0722565   32: 0.0569444   82: -0.0084985   84: -0.00856709   86: 0.0798179
Row 87:   17: -0.17079   18: 0.139499   31: 0.147661   32: -0.11637   85: -0.0195268   86: -0.00956562   87: 0.0803122
Row 88:   18: -0.108922   19: 0.0154075   32: 0.0935147   88: 0.0464303
Row 89:   17: 0.076799   18: -0.153598   19: 0.076799   32: 0   85: -0.00385189   87: -0.0153479   88: 0.00385189   89: 0.0851569
Row 90:   4: 0.1108   19: -0.0613734   20: -0.146695   32: 0.0972688   50: -0.0203135   51: -0.0073865   90: 0.0747646
Row 91:   18: 0.201129   19: -0.142188   20: 0.115423   32: -0.174364   88: -0.0272306   89: -0.0230516   90: -0.0163604   91: 0.0832428
Row 92:   5: 0.0942211   20: -0.077413   21: -0.107223   34: 0.0904152   53: -0.0162642   54: -0.00729109   92: 0.0731269
Row 93:   19: 0.0818086   20: -0.103474   32: -0.0930223   34: 0.114688   90: -0.00795685   91: -0.0124953   93: 0.0734865
Row 94:   20: -0.0863131   21: 0.0964712   32: 0.0932033   34: -0.103361   92: -0.0105417   93: -0.0152987   94: 0.0728539
Row 95:   6: 0.0964985   21: -0.0880292   22: -0.107744   33: 0.0992748   56: -0.0156114   57: -0.00851324   95: 0.072756
Row 96:   21: -0.0755245   22: 0.0906212   33: -0.0975796   34: 0.0824828   95: -0.0113246   96: 0.0730324
Row 97:   20: 0.102553   21: -0.119354   33: 0.11733   34: -0.10053   92: -0.0120622   94: -0.0135762   96: -0.0130703   97: 0.073063
Row 98:   7: 0.0982072   22: -0.0555055   23: -0.125692   24: 0.0829906   58: -0.0194765   59: -0.00507535   98: 0.074803
Row 99:   22: -0.118983   23: 0.111193   24: -0.0835425   33: 0.0913324   98: -0.0119466   99: 0.0730017
Row 100:   21: 0.0992989   22: -0.0995997   24: 0.0900331   33: -0.0897323   95: -0.0134941   96: -0.0113307   99: -0.00893901   100: 0.0725517
Row 101:   8: 0.104708   22: 0.0986109   23: -0.156444   24: -0.0468751   61: -0.00291774   62: -0.0232593   98: -0.00880103   99: -0.0158517   101: 0.0767643
Row 102:   9: 0.0983955   24: -0.0942456   25: -0.124075   37: 0.119925   64: -0.0116104   65: -0.0129885   102: 0.0737262
Row 103:   22: 0.109853   24: -0.103593   33: -0.135259   37: 0.128998   99: -0.0138941   100: -0.0135693   103: 0.0744947
Row 104:   24: -0.0539003   25: 0.108163   33: 0.103054   37: -0.157316   102: -0.0194084   103: -0.0199206   104: 0.0757059
Row 105:   10: 0.105223   25: -0.111385   26: -0.0965358   35: 0.102697   67: -0.00848113   68: -0.0178247   105: 0.073528
Row 106:   25: -0.113421   26: 0.105793   35: -0.119567   37: 0.127194   105: -0.0156528   106: 0.0740546
Row 107:   24: 0.0728206   25: -0.0536744   35: 0.0801006   37: -0.0992469   102: -0.0105729   104: -0.00763227   106: -0.0142388   107: 0.0751985
Row 108:   12: 0.0777613   26: -0.0525365   27: -0.124052   35: 0.0988275   72: -0.0185246   73: -0.000915684   108: 0.0769919
Row 109:   25: 0.0832674   26: -0.0887462   27: 0.0955182   35: -0.0900393   105: -0.0100214   106: -0.0107954   108: -0.0124884   109: 0.0725676
Row 110:   13: 0.0880473   27: -0.133459   28: -0.0450785   35: 0.09049   75: -0.00465584   76: -0.017356   110: 0.0751867
Row 111:   26: 0.0944382   27: -0.103586   28: 0.0844769   35: -0.0753288   108: -0.0122184   109: -0.0113911   110: -0.00661378   111: 0.0732259
Row 112:   14: 0.0941536   28: -0.0400872   29: -0.133883   36: 0.079817   78: -0.0203459   79: -0.00319254   112: 0.0764314
Row 113:   27: 0.122057   28: -0.0863546   35: -0.136673   38: 0.100971   110: -0.0160087   111: -0.0145055   113: 0.0744692
Row 114:   28: -0.108835   29: 0.121537   36: -0.113163   38: 0.100462   112: -0.013125   114: 0.0736021
Row 115:   28: -0.0934871   35: 0.121032   36: 0.105756   38: -0.133301   113: -0.0181596   114: -0.0151658   115: 0.07373
Row 116:   15: 0.0808401   29: -0.0832396   30: -0.0628419   36: 0.0652415   80: -0.0128264   81: -0.00738366   116: 0.0775466
Row 117:   28: 0.0963537   29: -0.165982   30: 0.108482   36: -0.0388535   112: -0.00682926   114: -0.0172592   116: -0.00288412   117: 0.0777602
Row 118:   16: 0.0904872   30: -0.0687924   31: -0.100344   36: 0.078649   83: -0.00659526   84: -0.0160265   118: 0.0777703
Row 119:   29: 0.150651   30: -0.180835   31: 0.157852   36: -0.127668   116: -0.0134262   117: -0.0242364   118: -0.0184907   119: 0.0811814
Row 120:   17: 0.12808   31: -0.195221   32: -0.0398024   36: 0.106943   86: -0.00467048   87: -0.0273496   120: 0.0803181
Row 121:   30: 0.0885758   31: -0.131876   32: 0.0691071   36: -0.0258068   118: -0.00117156   119: -0.0209724   120: -0.00528012   121: 0.0793671
Row 122:   20: 0.0855011   32: -0.0718724   34: -0.0897809   36: 0.0761522   93: -0.0133732   94: -0.00800211   122: 0.0737609
Row 123:   31: 0.133809   32: -0.120182   34: 0.108484   36: -0.122111   120: -0.0214556   121: -0.0119967   122: -0.00907206   123: 0.0758193
Row 124:   21: 0.0952513   33: -0.105243   34: -0.083047   38: 0.0930384   96: -0.00755045   97: -0.0162624   124: 0.0730955
Row 125:   24: 0.072687   33: -0.0419266   37: -0.108677   38: 0.0779166   103: -0.0123289   104: -0.00584281   125: 0.076319
Row 126:   33: -0.126801   34: 0.104656   37: 0.134351   38: -0.112206   124: -0.0132113   125: -0.0148403   126: 0.0744391
Row 127:   32: 0.11206   34: -0.140852   36: -0.101772   38: 0.130564   122: -0.00996599   123: -0.0180489   127: 0.0748865
Row 128:   33: 0.0920044   34: -0.0724453   36: 0.0825421   38: -0.102101   124: -0.0100483   126: -0.0129528   127: -0.015477   128: 0.074012
Row 129:   25: 0.0933844   35: -0.0640386   37: -0.118715   38: 0.0893687   106: -0.0175598   107: -0.00578633   129: 0.0738082
Row 130:   28: 0.0767268   35: -0.103918   37: 0.104   38: -0.0768082   113: -0.00708319   115: -0.0120985   129: -0.0121189   130: 0.0735645
Row 131:   28: 0.0848918   34: 0.0892903   36: -0.0657272   38: -0.108455   114: -0.00994967   115: -0.0112733   127: -0.0171641   128: -0.00515852   131: 0.0741883
Row 132:   33: 0.0935455   35: 0.0964175   37: -0.130514   38: -0.0594486   125: -0.00463885   126: -0.0187475   129: -0.0102233   130: -0.0138811   132: 0.0744499

6. Solve the system:

[10]:
gfu.vec.data = \
    a.mat.Inverse(freedofs=fes.FreeDofs()) * f.vec
Draw(gfu)

The Dirichlet boundary condition constrains some degrees of freedom. The argument fes.FreeDofs() indicates that only the remaining "free" degrees of freedom should participate in the linear solve.

You can examine the coefficient vector of solution if needed:

[11]:
print(gfu.vec)
       0
       0
       0
 0.0923044
       0
       0
       0
       0
       0
       0
       0
       0
 0.0578972
 0.0863393
 0.0954128
 0.0944891
 0.0888235
 0.0780439
 0.059628
 0.0330628
 0.0374521
 0.0370446
 0.0317995
 0.0185123
 0.0383632
 0.0427969
 0.047351
 0.0760518
 0.0895602
 0.0939297
 0.0914143
 0.0833171
 0.0654761
 0.0574569
 0.0647326
 0.0723792
 0.0852186
 0.0626708
 0.0776805
       0
 -0.00576774
       0
       0
 0.0208108
       0
 -0.0350847
 0.00263379
 -0.00729372
 -0.0027615
       0
 -0.00993549
 -0.00711876
       0
 -0.0174982
 -0.0120617
       0
 -0.0150936
 -0.0195578
 -0.00638541
 -0.0213554
       0
 -0.0254715
 -0.00955261
       0
 -0.0381111
 -0.0132127
       0
 -0.0262138
 -0.0182002
 -0.0333693
 -0.0245117
 -0.0242838
 -0.00451911
 -0.0119297
 -0.014536
 -0.00612786
 -0.0105674
 -0.00558557
 -0.00891829
 -0.00493114
 -0.0051195
 -0.00519767
 -0.007602
 0.00247896
 -0.00133557
 -0.00800354
 0.00157024
 -0.00177994
 -0.00829596
 0.00374357
 0.00436653
 -0.00759115
 -0.00373981
 -0.0120787
 -0.0104187
 -0.00708368
 -0.0136752
 -0.0120743
 -0.00778966
 -0.0256197
 -0.0072408
 -0.00331602
 -0.00900117
 -0.0206949
 -0.0050238
 -0.00300073
 -0.0140407
 -0.0179806
 -0.0153171
 -0.020859
 -0.0164647
 -0.00404961
 -0.00810738
 -0.0130797
 -0.0135373
 -0.00892006
 -0.00206078
 -0.00747051
 -0.00532125
 -0.00675915
 -0.00966483
 -0.00121964
 -0.00276467
 -0.0111685
 -0.00868831
 -0.0118313
 -0.00814322
 -0.0124053
 -0.0120342
 -0.00417412
 -0.0154546
 -0.00866456
 -0.010265


Ways to interact with NGSolve

  • A jupyter notebook (like this one) gives you one way to interact with NGSolve. When you have a complex sequence of tasks to perform, the notebook may not be adequate.

  • You can write an entire python module in a text editor and call python on the command line. (A script of the above is provided in poisson.py.)

    python3 poisson.py
    
  • If you want the Netgen GUI, then use netgen on the command line:

    netgen poisson.py
    

    You can then ask for a python shell from the GUI’s menu options (Solve -> Python shell).