This page was generated from unit-1.4-staticcond/staticcond.ipynb.
1.4 Static Condensation¶
Static condensation refers to the process of eliminating unknowns that are internal to elements from the global linear system. They are useful in standard methods and critical in methods like the HDG method. NGSolve automates static condensation across a variety of methods via a classification of degrees of freedom.
In this tutorial, you will learn
how to turn on static condensation (
eliminate_internal
orcondense
),how to get the full solution from the condensed system using data members
harmonic_extension_trans
harmonic_extension
inner_solve
,
their relationship to a Schur complement factorization,
types of degrees of freedom such as
COUPLING_TYPE.LOCAL_DOF
, andan automatic utility for solving via static condensation.
[1]:
import netgen.gui
from ngsolve import *
from netgen.geom2d import unit_square
mesh = Mesh(unit_square.GenerateMesh(maxh=0.4))
fes = H1(mesh, order=4, dirichlet='bottom|right')
u, v = fes.TnT()
Asking BilinearForm
to condense
¶
Keyword arguments condense
and eliminate_internal
are synonymous.
[2]:
a = BilinearForm(fes, condense=True)
a += grad(u) * grad(v) * dx
a.Assemble()
f = LinearForm(fes)
f += 1 * v * dx
f.Assemble()
u = GridFunction(fes)
The assembled matrix \(A=\)
a.mat
can be block partitioned into
where \(L\) denotes the set of local (or internal) degrees of freedom and \(E\) denotes the set of interface degrees of freedom.
In our current example \(E\) consists of edge and vertex dofs while \(L\) consists of triangle dofs. (Note that in practice, \(L\) and \(E\) may not be ordered contiguously and \(L\) need not appear before \(E\), but such details are immaterial for our discussion here.)
The condensed system is known as the Schur complement:
When
eliminate_internal
(orcondense
) is set toTrue
ina
, the statementa.Assemble
actually assembles \(S\).
A factorization of the inverse¶
NGSolve provides
a.harmonic_extension_trans
\(= \left(\begin{array}{cc} 0 & 0 \\ -A_{EL} A_{LL}^{-1} & 0 \end{array}\right)\)a.harmonic_extension
\(= \left(\begin{array}{cc} 0 & -A_{LL}^{-1} A_{LE} \\ 0 & 0 \end{array}\right)\)a.inner_solve
\(=\left(\begin{array}{cc} A_{LL}^{-1} & 0 \\ 0 & 0 \end{array}\right)\).
To solve
\[\begin{split} \left(\begin{array}{cc} A_{LL} & A_{LE}\\ A_{EL} & A_{EE} \end{array}\right) \left(\begin{array}{c} u_L \\ u_E \end{array}\right)= \left(\begin{array}{c} f_L \\ f_E \end{array}\right)\end{split}\]
we use a factorization of \(A^{-1}\) that uses \(S^{-1}\). Namely, we use the following identity:
We implement this formula step by step, starting with the computation of \(f_L'\) and \(f_E'\).
Full solution from the condensed system¶
The following step implements
\[\begin{split}\left(\begin{array}{c} f'_L \\ f'_E \end{array}\right) = \left(\begin{array}{cc} I & 0 \\ -A_{EL} A_{LL}^{-1} & I \end{array}\right) \left(\begin{array}{c} f_L \\ f_E \end{array}\right).\end{split}\]
[3]:
f.vec.data += a.harmonic_extension_trans * f.vec
The next step implements part of the next matrix application in the formula.
\[\begin{split}\left(\begin{array}{c} 0 \\ u_E \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & S^{-1} \end{array}\right) \left(\begin{array}{c} f'_L \\ f'_E \end{array}\right).\end{split}\]
[4]:
u.vec.data = a.mat.Inverse(freedofs=fes.FreeDofs(coupling=True)) * f.vec
Note:
Because
a
hascondense
set, the inversea.mat.Inverse
actually computes \(S^{-1}\).Note that instead of the usual
fes.FreeDofs()
, we have usedfes.FreeDofs(coupling=True)
or simplyfes.FreeDofs(True)
to specify that only the degrees of freedom that are not local and not Dirichlet should participate in the inverse computations. (The underlying assumption is that Dirichlet dofs cannot be local dofs.)
Next, we compute
\[\begin{split}\left(\begin{array}{c} u'_L \\ u_E \end{array}\right) = \left(\begin{array}{c} 0 \\ u_E \end{array}\right) + \left(\begin{array}{cc} A_{LL}^{-1} & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} f'_L \\ f'_E \end{array}\right).\end{split}\]
[5]:
u.vec.data += a.inner_solve * f.vec
Finally:
\[\begin{split}\left(\begin{array}{c} u_L \\ u_E \end{array}\right) = \left(\begin{array}{cc} I & -A_{LL}^{-1} A_{LE} \\ 0 & I \end{array}\right) \left(\begin{array}{c} u_L' \\ u_E \end{array}\right)\end{split}\]
[6]:
u.vec.data += a.harmonic_extension * u.vec
Draw(u)
Behind the scenes: CouplingType
¶
How does NGSolve know what is in the index sets \(L\) and \(E\)?
Look at
fes.CouplingType
to see a classification of degrees of freedom (dofs).
[7]:
for i in range(fes.ndof):
print(fes.CouplingType(i))
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
[8]:
dof_types = {}
for i in range(fes.ndof):
ctype = fes.CouplingType(i)
if ctype in dof_types.keys():
dof_types[ctype] += 1
else:
dof_types[ctype] = 1
dof_types
[8]:
{COUPLING_TYPE.WIREBASKET_DOF: 12,
COUPLING_TYPE.INTERFACE_DOF: 75,
COUPLING_TYPE.LOCAL_DOF: 42}
The LOCAL_DOF
forms the set \(L\) and the remainder forms the set \(E\). All finite element spaces in NGSolve have such dof classification.
Through this classification a bilinear form is able to automatically compute the Schur complement and the accompanying extension operators. Users need only specify the eliminate_internal
option. (Of course users should also make sure their method has an invertible \(A_{LL}\)!)
Inhomogeneous Dirichlet boundary conditions¶
In case of inhomogeneous Dirichlet boundary conditions, we combine the technique of Dirichlet data extension in 1.3 with the above static condensation principle in the following code.
[9]:
U = x*x*(1-y)*(1-y) # U = manufactured solution
DeltaU = 2*((1-y)*(1-y)+x*x) # Source: DeltaU = ∆U
f = LinearForm(fes)
f += -DeltaU * v * dx
f.Assemble()
u = GridFunction(fes)
u.Set(U, BND) # Dirichlet b.c: u = U on boundary
r = f.vec.CreateVector()
r.data = f.vec - a.mat * u.vec
r.data += a.harmonic_extension_trans * r
u.vec.data += a.mat.Inverse(fes.FreeDofs(True)) * r
u.vec.data += a.harmonic_extension * u.vec
u.vec.data += a.inner_solve * r
sqrt(Integrate((U-u)*(U-u),mesh)) # Compute error
[9]:
7.448524180967954e-16
If you find the above steps onerous, you can again use the automatic utility solvers.BVP
, which will perform static condensation if condense
is turned on in its input bilinear form.
Automatic utility BVP
¶
[10]:
u = GridFunction(fes)
u.Set(U, BND)
c = Preconditioner(a,"direct")
c.Update()
solvers.BVP(bf=a, lf=f, gf=u, pre=c)
sqrt(Integrate((U-u)*(U-u),mesh))
iteration 0 error = 0.461346101933963
iteration 1 error = 1.0582501159068494e-15
[10]:
7.426889288238498e-16