These geometries are bases on primitives (e.g. sphere, cylinder, plane) which are used to build solids by performing boolean operations. Netgen offers the following primitives
primitive | csg syntax | meaning |
---|---|---|
half-space | Plane(Pnt a,Vec n) | point p in plane, normal vector |
sphere | Sphere(Pnt c,float r) | sphere with center c and radius r |
cylinder | Cylinder(Pnt a, Pnt b, float r) | points a and b define the axes of a infinite cylinder of radius r |
brick | OrthoBrick (Pnt a, Pnt b) | axes parallel brick with minimal coordinates a and maximal coordinates b |
and the boolean operators
operator | set operation |
---|---|
* | intersection |
+ | union |
- | intersection with complement |
import netgen.gui
%gui tk
from ngsolve.solve import Draw, Redraw # just for visualization
Using these primitives and operations, we can easily construct a cube. First we import the netgen.csg
module, create 6 plane and intersect them to get the solid cube
.
from netgen.csg import *
left = Plane (Pnt(0,0,0), Vec(-1,0,0) )
right = Plane (Pnt(1,1,1), Vec( 1,0,0) )
front = Plane (Pnt(0,0,0), Vec(0,-1,0) )
back = Plane (Pnt(1,1,1), Vec(0, 1,0) )
bot = Plane (Pnt(0,0,0), Vec(0,0,-1) )
top = Plane (Pnt(1,1,1), Vec(0,0, 1) )
cube = left * right * front * back * bot * top
Then we create a CSGeometry
object and add the solid.
geo = CSGeometry()
geo.Add (cube)
mesh = geo.GenerateMesh(maxh=0.25)
Redraw()
# mesh.Save("cube.vol")
from netgen.csg import *
cube = OrthoBrick( Pnt(0,0,0), Pnt(1,1,1) )
hole = Cylinder ( Pnt(0.5, 0.5, 0), Pnt(0.5, 0.5, 1), 0.2)
geo = CSGeometry()
geo.Add (cube-hole.maxh(0.05))
mesh = geo.GenerateMesh(maxh=0.1)
Redraw()
A solid has members which we can set to define the desired properties.
sphere = Sphere(Pnt(0,0,0),1)
Now we can set a boundary name and a maximal mesh size on the surface of this sphere
sphere.bc("sphere").maxh(0.25)
and define a material for the volume
sphere.mat("iron")
In case we want to visualize the geometry we can define the color (using rgb values) and transparency of the solid.
sphere.col([1,0,0])#.transp()
geo = CSGeometry()
geo.Add(sphere)
geo.Draw()
Redraw()
ngmesh = geo.GenerateMesh()
print(type(ngmesh))
Redraw()
To improve the approximation of curved geometries it is possible to use curved elements. This can be done within NGSolve
. Thus we have to convert the Netgen
mesh to a NGSolve
mesh before curving it.
from ngsolve.comp import Mesh
mesh = Mesh(ngmesh)
print(type(mesh))
Redraw()
mesh.Curve(3)
Draw(mesh)
There are the following options to set the mesh size:
maxh
of GenerateMesh
maxh
property as above mentioned)Add(...,bc)
RestrictH
CloseSurfaces
to generate anisotropic meshesThe global mesh size can be set with the named argument maxh
. The following two versions are equivalent since all arguments of the of the GenerateMesh
function are parsed to the MeshingParameters
if no named argument mp
is given.
unit_cube.GenerateMesh(maxh=0.4)
mp = MeshingParameters(maxh=0.4)
unit_cube.GenerateMesh(mp = mp)
To set the mesh size for one domain of the mesh we have to add the desired maxh
as argument when adding the solid to the geometry
geo = CSGeometry()
brick = OrthoBrick(Pnt(-2,-2,-2),Pnt(2,2,2))
sphere = Sphere(Pnt(0,0,0),1)
geo.Add(brick-sphere)
geo.Add(sphere,maxh=0.1)
ngmesh = geo.GenerateMesh(maxh=0.4)
If we want to refine just on a surface we define it as property of the solid.
geo = CSGeometry()
brick = OrthoBrick(Pnt(-2,-2,-2),Pnt(2,2,2))
sphere = Sphere(Pnt(0,0,0),1)
geo.Add(brick-sphere)
geo.Add(sphere.maxh(0.1))
ngmesh = geo.GenerateMesh()
This can be done with the MeshingParameters
. Using RestrictH
we can define the mesh size in an arbitrary point.
geo = CSGeometry()
brick = OrthoBrick(Pnt(-2,-2,-2),Pnt(2,2,2))
sphere = Sphere(Pnt(0,0,0),1)
mp = MeshingParameters(maxh=0.4)
mp.RestrictH (x=0, y=0, z=1, h=0.025)
geo.Add(brick-sphere)
geo.Add(sphere)
ngmesh = geo.GenerateMesh(mp = mp)
If the geometry contains thin layers we can use CloseSurfaces
to avoid elements with small angles.
from netgen.csg import *
geo = CSGeometry()
box = OrthoBrick(Pnt(0,0,0),Pnt(1,1,1))
top = Plane(Pnt(0,0,0.52),Vec(0,0,1))
bot = Plane(Pnt(0,0,0.48),Vec(0,0,-1))
plate = box * top * bot
geo.Add((box-top).mat("air"))
geo.Add(plate.mat("plate"))
geo.Add((box-bot).mat("air"))
slices = [2**(-i) for i in reversed(range(1,6))]
# define the close surfaces
geo.CloseSurfaces(bot,top)#,slices)
nmesh = geo.GenerateMesh(maxh=0.3)
# refine the mesh between the close surfaces
# ZRefinement(nmesh,geo)
brick = OrthoBrick(Pnt(-2,-2,-2),Pnt(2,2,2)).bc('outer')
sphere = Sphere(Pnt(0,0,0),1).bc('sphere')
This can be done by adding the named argument bcmod
when adding the solid to the geometry. Here we change the boundary condition on the surface between the halfsphere
and the already added box
.
halfsphere = sphere * Plane(Pnt(0,0,0),Vec(1,0,0)).bc('plane')
box = brick-sphere
geo = CSGeometry()
geo.Add(box.col([1,0,0]).transp())
geo.Add(halfsphere.col([0,0,1]),bcmod=[(box,"halfsphere")])
geo.Draw()
ngmesh = geo.GenerateMesh()
mesh = Mesh(ngmesh)
mesh.GetBoundaries()