1.4 Static Condensation¶
Static condensation refers to the process of eliminating unknowns that are internal to elements from the global linear system. They are useful in standard methods and critical in methods like the HDG method. NGSolve automates static condensation across a variety of methods via a classification of degrees of freedom.
In [1]:
import netgen.gui
%gui tk
from ngsolve import *
from netgen.geom2d import unit_square
mesh = Mesh(unit_square.GenerateMesh(maxh=0.4))
fes = H1(mesh, order=4, dirichlet='bottom|right')
u, v = fes.TnT()
Asking BilinearForm to condense¶
In [2]:
a = BilinearForm(fes, eliminate_internal=True)
a += SymbolicBFI (grad(u) * grad(v))
a.Assemble()
f = LinearForm(fes)
f += SymbolicLFI (1 * v)
f.Assemble()
u = GridFunction(fes)
- The assembled matrix \(A=\)
a.matcan be block partitioned into
where \(L\) denotes the set of local or internal degrees of freedom and \(E\) denotes the set of interface degrees of freedom.
- In our current example \(E\) consists of edge and vertex dofs while \(L\) consists of triangle dofs. (Note that in practice, \(L\) and \(E\) may not be ordered contiguously and \(L\) need not appear before \(E\), but such details are immaterial for our discussion here.)
- The condensed system is known as the Schur complement:
- When
eliminate_internalis set toTrueina, the statementa.Assembleactually assembles \(S\).
A factorization¶
NGSolve provides
a.harmonic_extension_trans\(= \left(\begin{array}{cc} 0 & 0 \\ -A_{EI} A_{LL}^{-1} & 0 \end{array}\right)\)a.harmonic_extension\(= \left(\begin{array}{cc} 0 & -A_{LL}^{-1} A_{LE} \\ 0 & 0 \end{array}\right)\)a.inner_solve\(=\left(\begin{array}{cc} A_{LL}^{-1} & 0 \\ 0 & 0 \end{array}\right)\).
To solve
\[\begin{split} \left(\begin{array}{cc} A_{LL} & A_{LE}\\ A_{EL} & A_{EE} \end{array}\right) \left(\begin{array}{c} u_L \\ u_E \end{array}\right)= \left(\begin{array}{c} f_L \\ f_E \end{array}\right)\end{split}\]
we use a factorization of \(A^{-1}\) that uses \(S^{-1}\). Namely, we use the following identity:
We implement this formula step by step, starting with the computation of \(f_L'\) and \(f_E'\).
Steps to compute the solution¶
The following step implements
\[\begin{split}\left(\begin{array}{c} f'_L \\ f'_E \end{array}\right) = \left(\begin{array}{cc} I & 0 \\ -A_{EL} A_{LL}^{-1} & I \end{array}\right) \left(\begin{array}{c} f_L \\ f_E \end{array}\right).\end{split}\]
In [3]:
f.vec.data += a.harmonic_extension_trans * f.vec
The next step implements part of the next matrix application in the formula.
\[\begin{split}\left(\begin{array}{c} 0 \\ u_E \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & S^{-1} \end{array}\right) \left(\begin{array}{c} f'_L \\ f'_E \end{array}\right).\end{split}\]
In [4]:
u.vec.data = \
a.mat.Inverse(freedofs=fes.FreeDofs(coupling=True)) * f.vec
Note:
- Because we set
eliminate_internalina, the inversea.mat.Inverseactually computes \(S^{-1}\). - Note that instead of the usual
fes.FreeDofs(), we have usedfes.FreeDofs(coupling=True)or simplyfes.FreeDofs(True)to specify that only the degrees of freedom that are not local and not Dirichlet should participate in the inverse computations. (The underlying assumption is that Dirichlet dofs cannot be local dofs.)
- Because we set
Next, we compute
\[\begin{split}\left(\begin{array}{c} u'_L \\ u_E \end{array}\right) = \left(\begin{array}{c} 0 \\ u_E \end{array}\right) + \left(\begin{array}{cc} A_{LL}^{-1} & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} f'_L \\ f'_E \end{array}\right).\end{split}\]
In [5]:
u.vec.data += a.inner_solve * f.vec
Finally:
\[\begin{split}\left(\begin{array}{c} u_L \\ u_E \end{array}\right) = \left(\begin{array}{cc} I & -A_{LL}^{-1} A_{LE} \\ 0 & I \end{array}\right) \left(\begin{array}{c} u_L' \\ u_E \end{array}\right)\end{split}\]
In [6]:
u.vec.data += a.harmonic_extension * u.vec
Draw(u)
Behind the scenes: CouplingType¶
How does NGSolve know what is in the index sets \(L\) and \(E\)?
- Look at
fes.CouplingTypeto see a classification of degrees of freedom.
In [7]:
for i in range(fes.ndof):
print(fes.CouplingType(i))
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.WIREBASKET_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.INTERFACE_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
COUPLING_TYPE.LOCAL_DOF
In [8]:
dof_types = {}
for i in range(fes.ndof):
ctype = fes.CouplingType(i)
if ctype in dof_types.keys():
dof_types[ctype] += 1
else:
dof_types[ctype] = 1
dof_types
Out[8]:
{COUPLING_TYPE.WIREBASKET_DOF: 17,
COUPLING_TYPE.INTERFACE_DOF: 108,
COUPLING_TYPE.LOCAL_DOF: 60}
The LOCAL_DOF forms the set \(L\) and the remainder forms the
set \(E\). All finite element spaces in NGSolve have such dof
classification.
Through this classification a bilinear form is able to automatically
compute the Schur complement and the accompanying extension operators.
Users need only specify the eliminate_internal option. (Of course
users should also make sure their method has an invertible
\(A_{LL}\)!)
Inhomogeneous Dirichlet boundary conditions¶
In case of inhomogeneous Dirichlet boundary conditions we must combine the technique of Dirichlet data extension in a previous tutorial with static condensation:
In [9]:
U = x*x*(1-y)*(1-y) # U = manufactured solution
DeltaU = 2*((1-y)*(1-y)+x*x) # Source: DeltaU = ∆U
f = LinearForm(fes)
f += SymbolicLFI(-DeltaU*v)
f.Assemble()
u = GridFunction(fes)
u.Set(U, BND) # Dirichlet b.c: u = U
# Modify source per Dirichlet extension technique:
r = f.vec.CreateVector()
r.data = f.vec - a.mat * u.vec
r.data += a.harmonic_extension_trans * r
# Apply the static condensation technique:
u.vec.data += a.mat.Inverse(fes.FreeDofs(True)) * r
u.vec.data += a.harmonic_extension * u.vec
u.vec.data += a.inner_solve * r
sqrt(Integrate((U-u)*(U-u),mesh)) # Compute error
Out[9]:
1.0192514570333646e-15